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1 Mathematical Basis

1.1 Definition (Mathematical Formulation)

minimize 𝑓(x)
subject to 𝑔𝑖(x) ≤ 0, 𝑖 = 1,… ,𝑚

x ∈ 𝐶

(1)

Vector x = (𝑥1,… , 𝑥𝑛)⊤ represents optimization (decision) variables.
Function 𝑓 ∶ ℝ𝑛 → ℝ is an objective function.
Functions 𝑔𝑖 ∶ ℝ𝑛 → ℝ, 𝑖 = 1,… ,𝑚 are constraint functions (representing inequality con-

straints).
Set 𝐶 ⊆ ℝ𝑛 is a constraint set.

1.2 Open and Close Line

If x,y ∈ ℝ𝑛, the closed line segment between x and y is given by:

[x,y] = {x + 𝛼(y − x) ∶ 𝛼 ∈ [0, 1]} .

The open line segment (x,y) is similarly defined as:

(x,y) = {x + 𝛼(y − x) ∶ 𝛼 ∈ (0, 1)}

for x ≠ y and (x,x) = ∅.

1.3 Unit-Simplex

Δ𝑛 = {x ∈ ℝ𝑛 ∶ x ≥ 0, e⊤x = 1,where e = [1, 1,⋯]𝑇} .

1.4 Norms

The ℓ𝑝-norm (𝑝 ≥ 1) is defined by:

‖x‖𝑝 = (
𝑛

∑
𝑖=1

|𝑥𝑖|𝑝)
1
𝑝

.

The ℓ1-norm (Manhattan norm or Taxicab Norm) is:

‖x‖1 =
𝑛

∑
𝑖=1

|𝑥𝑖|.
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The ℓ2-norm (Euclidean norm) is :

‖x‖ = ‖x‖2 = √
𝑛

∑
𝑖=1

𝑥2
𝑖 .

The ℓ∞-norm (infinity norm) is:

‖x‖∞ = max
𝑖=1,2,…,𝑛

|𝑥𝑖|.

1.5 Cauchy-Schwarz Inequality

For any x,y ∈ ℝ𝑛:
|x⊤y| ≤ ‖x‖2 ⋅ ‖y‖2.

1.6 Matrix Norm

A norm ‖ ⋅ ‖ on ℝ𝑚×𝑛 is a function ‖ ⋅ ‖ ∶ ℝ𝑚×𝑛 → ℝ satisfying:

• (Nonnegativity) ‖A‖ ≥ 0 for any A ∈ ℝ𝑚×𝑛 and ‖A‖ = 0 if and only if A = 0.

• (Positive homogeneity) ‖𝜆A‖ = |𝜆|‖A‖ for any A ∈ ℝ𝑚×𝑛 and 𝜆 ∈ ℝ.

• (Triangle inequality) ‖A + B‖ ≤ ‖A‖ + ‖B‖ for any A,B ∈ ℝ𝑚×𝑛.

• (Submultiplicativity) ‖AB‖ ≤ ‖A‖‖B‖ for any compatible A,B.

1.6.1 Frobenius Norm

The Frobenius norm of a matrix A is given by:

‖A‖𝐹 =
√√√
⎷

𝑚
∑
𝑖=1

𝑛
∑
𝑗=1

𝐴2
𝑖,𝑗, A ∈ ℝ𝑚×𝑛.

The Frobenius norm is not an induced norm.

1.6.2 Spectral Norm

If ‖ ⋅ ‖𝑎 = ‖ ⋅ ‖𝑏 = ‖ ⋅ ‖2, the induced (2, 2)-norm of a matrix A ∈ ℝ𝑚×𝑛 is the maximum singular
value of A:

‖A‖2 = ‖A‖2,2 = √𝜆max(A⊤A) ≡ 𝜎max(A).

• ℓ1-norm: When ‖ ⋅ ‖𝑎 = ‖ ⋅ ‖𝑏 = ‖ ⋅ ‖1, the induced (1, 1)-matrix norm of a matrix A ∈ ℝ𝑚×𝑛 is
given by

‖A‖1 = max
𝑗=1,2,…,𝑛

𝑚
∑
𝑖=1

|𝐴𝑖,𝑗|.

• ℓ∞-norm: When ‖ ⋅ ‖𝑎 = ‖⋅‖𝑏 = ‖⋅‖∞, the induced (∞,∞)-matrix norm of a matrix A ∈ ℝ𝑚×𝑛

is given by

‖A‖∞ = max
𝑖=1,2,…,𝑚

𝑛
∑
𝑗=1

|𝐴𝑖,𝑗|.
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1.6.3 Induced Matrix Norm

Given a matrix A ∈ ℝ𝑚×𝑛 and two norms ‖⋅‖𝑎 and ‖⋅‖𝑏 on ℝ𝑛 and ℝ𝑚 respectively, the induced
matrix norm ‖A‖𝑎,𝑏 (called (𝑎, 𝑏)-norm) is defined by:

‖A‖𝑎,𝑏 = max
x

{‖Ax‖𝑏 ∶ ‖x‖𝑎 ≤ 1}.

Conclusion:
‖Ax‖𝑏 ≤ ‖A‖𝑎,𝑏‖x‖𝑎.

1.6.4 Basic Properties

1. The Frobenius norm is related to the trace of the matrix:

‖A‖2𝐹 = trace(A⊤A).

2. The Frobenius norm is related to the singular values 𝜎𝑖 of the matrix:

‖A‖2𝐹 =
min(𝑚,𝑛)
∑
𝑖=1

𝜎2
𝑖 ,

where 𝜎𝑖 are the singular values of the matrix.

3. If the matrix is symmetric positive definite, the Frobenius norm is related to the eigenvalues
𝜆𝑖 of the matrix:

‖A‖2𝐹 =
𝑛

∑
𝑖=1

𝜆2
𝑖 ,

where 𝜆𝑖 are the eigenvalues of the matrix.

1.6.5 Calculation Techniques

Matrix Decompositions

• Singular Value Decomposition (SVD): If the SVD of A is A = UΣV⊤, where Σ is
diagonal, then:

‖A‖2𝐹 = trace(Σ2) = ∑
𝑖

𝜎2
𝑖 .

This is efficient when computing singular values is faster than element-wise computation.

• QR Decomposition: If A = QR, where Q is orthogonal, then:

‖A‖2𝐹 = ‖R‖2𝐹 .

This is suitable for sparse matrices.

• Eigenvalue Decomposition (for Symmetric Matrices): For symmetric matrices:

‖A‖2𝐹 =
𝑛

∑
𝑖=1

𝜆2
𝑖 ,

3



where 𝜆𝑖 are the eigenvalues of A.

Trace Property
Using the trace property of the Frobenius norm:

‖A‖2𝐹 = trace(A⊤A).

Only the diagonal elements of A⊤A need to be computed:

‖A‖2𝐹 =
𝑚
∑
𝑖=1

𝑛
∑
𝑗=1

𝐴2
𝑖𝑗.

Block Matrices
For a block matrix:

A = ⎡⎢
⎣

A1 A2

A3 A4

⎤⎥
⎦
,

the Frobenius norm is:

‖A‖2𝐹 = ‖A1‖2𝐹 + ‖A2‖2𝐹 + ‖A3‖2𝐹 + ‖A4‖2𝐹 .

Vectorization
Using matrix vectorization:

‖A‖2𝐹 = ‖vec(A)‖22,

where vec(A) stacks the columns of A into a vector. In matrix form:

‖A‖2𝐹 = A(∶)⊤A(∶),

where A(∶) denotes the vectorized form of A.
Low-Rank Matrices
If A is a low-rank matrix and can be factorized as A = UV⊤ (where U and V are small or

column matrices), then:
‖A‖2𝐹 = ‖U‖2𝐹 ⋅ ‖V‖2𝐹 .

This greatly reduces computational complexity.

1.7 Eigenvalues and Eigenvectors

Let A ∈ ℝ𝑛×𝑛. Then a nonzero vector v ∈ ℝ𝑛 is called an eigenvector of A if there exists a
𝜆 ∈ ℂ for which

Av = 𝜆v.

The scalar 𝜆 is the eigenvalue corresponding to the eigenvector v.
In general, real-valued matrices can have complex eigenvalues, but when the matrix is sym-

metric the eigenvalues are necessarily real.
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1.8 Positive Semi-Definite Check

1.8.1 Definition-Based Approach

A symmetric matrix 𝐴 is positive semi-definite if, for any vector x ∈ ℝ𝑛, the following holds:

x𝑇𝐴x ≥ 0

Pros: This is a strict and general standard for checking positive semi-definite.
Cons: It is often impractical to verify for all possible vectors x.

1.8.2 Eigenvalue Test

A matrix 𝐴 is positive semi-definite if all of its eigenvalues are non-negative:

𝜆𝑖 ≥ 0 ∀𝑖

Steps:

• 1. Solve the characteristic equation det(𝐴 − 𝜆𝐼) = 0;

• 2. Check if all eigenvalues 𝜆𝑖 are non-negative.

1.8.3 Principal Minor Test

For a symmetric matrix 𝐴, it is positive semi-definite if all of its leading principal minors
(determinants of upper-left submatrices) are non-negative.

Example: Determine whether the following 3 × 3 matrix is positive semi-definite.

𝐴 =
⎡
⎢⎢
⎣

2 −1 0
−1 2 −1
0 −1 2

⎤
⎥⎥
⎦

Step 1: Confirm matrix symmetry
Clearly, 𝐴 is symmetric since 𝐴 = 𝐴⊤.
Step 2: Calculate the principal minors
1st principal minor: The diagonal elements of 𝐴.

det(𝐴(1)
1 ) = 2 ≥ 0 det(𝐴(2)

1 ) = 2 ≥ 0 det(𝐴(3)
1 ) = 2 ≥ 0

2nd principal minor: Select submatrices corresponding to any two rows and columns.
1. Choose the first two rows and columns:

𝐴(1)
2 = ⎡⎢

⎣

2 −1
−1 2

⎤⎥
⎦

det(𝐴(1)
2 ) = (2)(2) − (−1)(−1) = 4 − 1 = 3 ≥ 0
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2. Choose the 1st and 3rd rows and columns:

𝐴(2)
2 = ⎡⎢

⎣

2 0
0 2

⎤⎥
⎦

det(𝐴(2)
2 ) = (2)(2) − (0)(0) = 4 ≥ 0

3. Choose the last two rows and columns:

𝐴(3)
2 = ⎡⎢

⎣

2 −1
−1 2

⎤⎥
⎦

det(𝐴(3)
2 ) = (2)(2) − (−1)(−1) = 4 − 1 = 3 ≥ 0

3rd principal minor: The determinant of the entire matrix.

det(𝐴) = 2 ⋅ 2 − (−1)(−1) − (1)(−2 ⋅ 0 ⋅ (−1)) + 0 = 2(4 − 1) − (−1)(2 − 0) + 0 = 2 × 3 + 2 = 8 ≥ 0

1.8.4 Cholesky Decomposition

A matrix 𝐴 is positive semi-definite if and only if it can be decomposed as:

𝐴 = 𝐿𝐿𝑇

where 𝐿 is a lower triangular matrix with non-negative diagonal entries.
Steps:

• 1. Attempt to perform Cholesky decomposition;

• 2. If successful, ensure that the diagonal elements of 𝐿 are non-negative.

Example:

The matrix 𝐴 = ⎡⎢
⎣

1 0
0 0

⎤⎥
⎦

has the following Cholesky decomposition:

𝐿 = ⎡⎢
⎣

1 0
0 0

⎤⎥
⎦
, 𝐴 = 𝐿𝐿𝑇

Thus, 𝐴 is positive semi-definite.

Criterion Positive Definite Positive Semi-Definite
Definition x𝑇𝐴x > 0 for all non-zero x x𝑇𝐴x ≥ 0 for all x
Eigenvalues All 𝜆𝑖 > 0 All 𝜆𝑖 ≥ 0
Principal minors All positive All non-negative
Cholesky decomposition 𝐿𝑖𝑖 > 0 𝐿𝑖𝑖 ≥ 0

表 1: Comparison of Positive Definite and Positive Semi-Definite Matrices
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1.9 The Spectral Factorization Theorem

Let A ∈ ℝ𝑛×𝑛 be an 𝑛×𝑛 symmetric matrix. Then there exists an orthogonal matrix U ∈ ℝ𝑛×𝑛

(U⊤U = UU⊤ = I) and a diagonal matrix D = diag(𝑑1, 𝑑2,… , 𝑑𝑛) for which

U⊤AU = D.

A direct result is that Tr(A) = ∑𝑛
𝑖=1 𝜆𝑖(A) and

det(A) =
𝑛
∏
𝑖=1

𝜆𝑖(A).

1.10 Properties (Orthogonal Matrices)

An orthogonal matrix Q has the following key properties:

1. Inverse equals transpose:
Q⊤ = Q−1

This means that multiplying Q by its transpose results in the identity matrix:

Q⊤Q = I.

2. Preserves vector norms: For any vector x,

‖Qx‖ = ‖x‖.

This indicates that orthogonal matrices preserve the length (norm) of vectors.

3. Preserves dot products: For any vectors x and y,

(Qx)⊤(Qy) = x⊤y.

This means orthogonal matrices preserve angles between vectors.

4. Determinant: The determinant of an orthogonal matrix is either +1 or −1:

det(Q) = ±1.

A determinant of +1 represents a proper rotation, and −1 represents a reflection.

5. Eigenvalues: If 𝜆 is an eigenvalue of Q, then |𝜆| = 1, meaning all eigenvalues lie on the unit
circle in the complex plane.

6. Orthogonal matrix columns: The columns (and rows) of an orthogonal matrix form an
orthonormal set, meaning they are orthogonal to each other and have unit length.
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1.11 Definition (Open and Close Ball)

The open ball with center c ∈ ℝ𝑛 and radius 𝑟:

𝐵(c, 𝑟) = {x ∶ ‖x − c‖ < 𝑟}.

The closed ball with center c ∈ ℝ𝑛 and radius 𝑟:

𝐵[c, 𝑟] = {x ∶ ‖x − c‖ ≤ 𝑟}.

1.12 Definition (Ellipsoids)

An ellipsoid is a set of the form

𝐸 = {x ∈ ℝ𝑛 ∶ x⊤Qx + 2b⊤x + 𝑐 ≤ 0},

where Q ∈ ℝ𝑛×𝑛 is positive semidefinite, b ∈ ℝ𝑛, and 𝑐 ∈ ℝ.

1.13 Definition (Interior points)

The set of all interior points of a given set 𝑈 is called the interior of the set and is denoted by
int(𝑈):

int(𝑈) = {x ∈ 𝑈 ∶ 𝐵(x, 𝑟) ⊆ 𝑈 for some 𝑟 > 0}.

1.14 Example

int(ℝ𝑛
+) = ℝ𝑛

++, int(𝐵[c, 𝑟]) = 𝐵(c, 𝑟), int([x,y]) = ?

1.15 Proposition

A union of any number of open sets is an open set and the intersection of a nite number of
open sets is open.

1.16 Definition (Closeness)

A set 𝑈 ⊆ ℝ𝑛 is closed if it contains all the limits of convergent sequences of vectors in 𝑈 , that
is, if {x𝑖}∞𝑖=1 ⊆ 𝑈 satisfies x𝑖 → x∗ as 𝑖 → ∞, then x∗ ∈ 𝑈 .

Remark. A known result states that 𝑈 is closed if and only if its complement 𝑈𝑐 is open.

1.17 Example

The closed ball 𝐵[c, 𝑟], closed line segments, the nonnegative orthant ℝ𝑛
+, and the unit simplex

Δ𝑛.
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1.18 Definition (Boundary Points)

Given a set 𝑈 ⊆ ℝ𝑛, a boundary point of 𝑈 is a vector x ∈ ℝ𝑛 satisfying the following: any
neighborhood of x contains at least one point in 𝑈 and at least one point in its complement 𝑈𝑐.
The set of all boundary points of a set 𝑈 is denoted by bd(𝑈).

1.19 Example

bd(𝐵(c, 𝑟)) =

bd(𝐵[c, 𝑟]) =

bd(ℝ𝑛
++) =

bd(ℝ𝑛
+) =

bd(ℝ𝑛) =

bd(Δ𝑛) =

1.20 Definition(Closure)

The closure of a set 𝑈 ⊆ ℝ𝑛 is denoted by cl(𝑈) and is defined to be the smallest closed set
containing 𝑈 :

cl(𝑈) = ⋂{𝑇 ∶ 𝑈 ⊆ 𝑇 , 𝑇 is closed}.

Another equivalent definition of cl(𝑈) is:

cl(𝑈) = 𝑈 ∪ bd(𝑈).

1.21 Example

cl(ℝ𝑛
++) =

cl(𝐵(c, 𝑟)) =

(x ≠ y), cl((x,y)) =

1.22 Definition (Boundedness)

A set 𝑈 ⊆ ℝ𝑛 is called bounded if there exists 𝑀 > 0 for which 𝑈 ⊆ 𝐵(0,𝑀).

1.23 Definition (Compactness)

A set 𝑈 ⊆ ℝ𝑛 is called compact if it is closed and bounded.
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1.24 Definition (Directional Derivatives and Gradients)

Let 𝑓 be a function defined on a set 𝑆 ⊆ ℝ𝑛. Let x ∈ int(𝑆) and let d ∈ ℝ𝑛. If the limit

lim
𝑡→0+

𝑓(x + 𝑡d) − 𝑓(x)
𝑡

exists, then it is called the directional derivative of 𝑓 at x along the direction d and is denoted by
𝑓 ′(x;d).

1.25 Remark

1. For any 𝑖 = 1, 2,… , 𝑛, if the limit

lim
𝑡→0

𝑓(x + 𝑡e𝑖) − 𝑓(x)
𝑡

exists, then its value is called the 𝑖-th partial derivative and is denoted by 𝜕𝑓
𝜕𝑥𝑖

(x).

2. If all the partial derivatives of a function 𝑓 exist at a point x ∈ ℝ𝑛, then the gradient of 𝑓 at
x is

∇𝑓(x) = ( 𝜕𝑓
𝜕𝑥1

(x), 𝜕𝑓
𝜕𝑥2

(x),… , 𝜕𝑓
𝜕𝑥𝑛

(x))
⊤
.

1.26 Definition (Continuous Dierentiability)

A function 𝑓 defined on an open set 𝑈 ⊆ ℝ𝑛 is called continuously differentiable over 𝑈 if all
the partial derivatives exist and are continuous on 𝑈 . In that case,

𝑓 ′(x;d) = ∇𝑓(x)⊤d, x ∈ 𝑈,d ∈ ℝ𝑛.

1.27 Proposition

Let 𝑓 ∶ 𝑈 → ℝ be defined on an open set 𝑈 ⊆ ℝ𝑛. Suppose that 𝑓 is continuously differentiable
over 𝑈 . Then

lim
d→0

𝑓(x + d) − 𝑓(x) − ∇𝑓(x)⊤d
‖d‖ = 0, ∀x ∈ 𝑈.

Remark. Another way to write the above result is as follows:

𝑓(y) = 𝑓(x) + ∇𝑓(x)⊤(y − x) + 𝑜(‖y − x‖),

where 𝑜(⋅) ∶ ℝ𝑛
+ → ℝ is a one-dimensional function satisfying 𝑜(𝑡)

𝑡 → 0 as 𝑡 → 0+.

1.28 Definition (Twice Dierentiability)

The partial derivatives 𝜕𝑓 are themselves real-valued functions that can be partially differen-
tiated. The (𝑖, 𝑗)-partial derivatives of 𝑓 at x ∈ 𝑈 (if they exist) are defined by

𝜕2𝑓
𝜕𝑥𝑖𝜕𝑥𝑗

(x) = 𝜕
𝜕𝑥𝑖

( 𝜕𝑓
𝜕𝑥𝑗

)(x).
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A function 𝑓 defined on an open set 𝑈 ⊆ ℝ𝑛 is called twice continuously differentiable over 𝑈 if all
the second order partial derivatives exist and are continuous over 𝑈 . In that case, for any 𝑖 ≠ 𝑗
and any x ∈ 𝑈 :

𝜕2𝑓
𝜕𝑥𝑖𝜕𝑥𝑗

(x) = 𝜕2𝑓
𝜕𝑥𝑗𝜕𝑥𝑖

(x).

1.29 Definition (The Hessian)

The Hessian of 𝑓 at a point x ∈ 𝑈 is the 𝑛 × 𝑛 matrix:

∇2𝑓(x) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜕2𝑓
𝜕𝑥2

1

𝜕2𝑓
𝜕𝑥1𝜕𝑥2

⋯ 𝜕2𝑓
𝜕𝑥1𝜕𝑥𝑛

𝜕2𝑓
𝜕𝑥2𝜕𝑥1

𝜕2𝑓
𝜕𝑥2

2
⋯ 𝜕2𝑓

𝜕𝑥2𝜕𝑥𝑛

⋮ ⋮ ⋱ ⋮
𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥1
𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥2
⋯ 𝜕2𝑓

𝜕𝑥2𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Remark. For twice continuously differentiable functions, the Hessian is a symmetric matrix.

1.30 Theorem (Linear Approximation Theorem)

Let 𝑓 ∶ 𝑈 → ℝ be defined on an open set 𝑈 ⊆ ℝ𝑛. Suppose that 𝑓 is twice continuously
differentiable over 𝑈 . Let x ∈ 𝑈 and 𝑟 > 0 satisfy 𝐵(x, 𝑟) ⊆ 𝑈 . Then for any y ∈ 𝐵(x, 𝑟) there
exists 𝜉 ∈ [x,y] such that:

𝑓(y) = 𝑓(x) + ∇𝑓(x)⊤(y − x) + 1
2(y − x)⊤∇2𝑓(𝜉)(y − x).

1.31 Theorem (Quadratic Approximation Theorem)

Let 𝑓 ∶ 𝑈 → ℝ be defined on an open set 𝑈 ⊆ ℝ𝑛. Suppose that 𝑓 is twice continuously
differentiable over 𝑈 . Let x ∈ 𝑈 and 𝑟 > 0 satisfy 𝐵(x, 𝑟) ⊆ 𝑈 . Then for any y ∈ 𝐵(x, 𝑟):

𝑓(y) = 𝑓(x) + ∇𝑓(x)⊤(y − x) + 1
2(y − x)⊤∇2𝑓(x)(y − x) + 𝑜(‖y − x‖2).
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2 Unconstrained Optimization

2.1 Definition (Stationary Point)

Let 𝑓 ∶ 𝑈 → ℝ be defined on a set 𝑈 ⊆ ℝ𝑛. Suppose that x∗ ∈ int(𝑈) and that all the partial
derivatives of 𝑓 are defined at x∗. Then x∗ is called a stationary point of 𝑓 if ∇𝑓(x∗) = 0.

2.2 Example

min{𝑓(𝑥, 𝑦) = 𝑥 + 𝑦
𝑥2 + 𝑦2 + 1 ∶ 𝑥, 𝑦 ∈ ℝ}

∇𝑓(𝑥, 𝑦) = 1
(𝑥2 + 𝑦2 + 1)2

⎛⎜
⎝

(𝑥2 + 𝑦2 + 1) − 2(𝑥 + 𝑦)𝑥
(𝑥2 + 𝑦2 + 1) − 2(𝑥 + 𝑦)𝑦

⎞⎟
⎠

.

Stationary points are those satisfying:

−𝑥2 − 2𝑥𝑦 + 𝑦2 = −1,
𝑥2 − 2𝑥𝑦 − 𝑦2 = −1.

Hence, the stationary points are:

( 1√
2
, 1√

2
) ,(− 1√

2
,− 1√

2
) .

( 1√
2
, 1√

2
) − global maximizer, (− 1√

2
,− 1√

2
) − global minimizer.

2.3 Theorem (Second order differentiable)

Let 𝑓 ∶ 𝑈 → ℝ be a function defined on an open set 𝑈 ⊆ ℝ𝑛. Suppose that 𝑓 is twice
continuously differentiable over 𝑈 and that x∗ is a stationary point. Then

1. If x∗ is a local minimum point, then ∇2𝑓(x∗) ⪰ 0.

2. If x∗ is a local maximum point, then ∇2𝑓(x∗) ⪯ 0.

2.4 Proof

1. Stationary Point Condition:
Since x∗ is a stationary point, the first derivative (gradient) of 𝑓 at x∗ is zero:

∇𝑓(x∗) = 0

2. Second-Order Taylor Expansion:
For a twice continuously differentiable function 𝑓 , the second-order Taylor expansion around
x∗ is:

𝑓(x∗ + h) = 𝑓(x∗) + ∇𝑓(x∗)⊤h + 1
2h⊤∇2𝑓(x∗)h + 𝑜(‖h‖2)

12



Given that ∇𝑓(x∗) = 0, this simplifies to:

𝑓(x∗ + h) = 𝑓(x∗) + 1
2h⊤∇2𝑓(x∗)h + 𝑜(‖h‖2)

3. Local Minimum Condition:
Since x∗ is a local minimum, for sufficiently small h, the function satisfies:

𝑓(x∗ + h) ≥ 𝑓(x∗)

Substituting the Taylor expansion:

1
2h⊤∇2𝑓(x∗)h + 𝑜(‖h‖2) ≥ 0

Dividing both sides by ‖h‖2 (assuming h ≠ 0) and taking the limit as h → 0, the higher-order
term 𝑜(‖h‖2) becomes negligible:

1
2h⊤∇2𝑓(x∗)h ≥ 0

This implies that:
h⊤∇2𝑓(x∗)h ≥ 0 for all h ∈ ℝ𝑛

By definition, this means that the Hessian matrix ∇2𝑓(x∗) is positive semidefinite, denoted
as:

∇2𝑓(x∗) ⪰ 0

2.5 Definition (Saddle Point)

Let 𝑓 ∶ 𝑈 → ℝ be a continuously differentiable function defined on an open set 𝑈 ⊆ ℝ𝑛. A
stationary point x∗ ∈ 𝑈 is called a saddle point of 𝑓 over 𝑈 if it is neither a local minimum point
nor a local maximum point of 𝑓 over 𝑈 .

2.6 Theorem (Saddle Point Condition)

Let 𝑓 ∶ 𝑈 → ℝ be a function defined on an open set 𝑈 ⊆ ℝ𝑛. Suppose that 𝑓 is twice
continuously differentiable over 𝑈 and that x∗ is a stationary point. If ∇2𝑓(x∗) is an indefinite
matrix, then x∗ is a saddle point of 𝑓 over 𝑈 .

2.7 Theorem (Weierstrass Theorem)

Let 𝑓 be a continuous function defined over a nonempty compact set 𝐶 ⊆ ℝ𝑛. Then there
exists a global minimum point of 𝑓 over 𝐶 and a global maximum point of 𝑓 over 𝐶.

2.8 Definition (Coercive)

Let 𝑓 ∶ ℝ𝑛 → ℝ be a continuous function over ℝ𝑛. 𝑓 is called coercive if

lim
‖x‖→∞

𝑓(x) = ∞.

13



2.9 Theorem (Coercivity of Quadratic Functions)

Suppose that
𝑓(x) = x⊤𝐴x + 2b⊤x + 𝑐,

where 𝐴 ∈ ℝ𝑛×𝑛 is symmetric, b ∈ ℝ𝑛, and 𝑐 ∈ ℝ. Then 𝑓 is coercive if and only if 𝐴 ≻ 0.

2.10 Proof

Sufficiency: Assume 𝐴 ≻ 0, then using eigenvalue properties, we have

𝜆min(𝐴) ≤ x⊤𝐴x
‖x‖2 ≤ 𝜆max(𝐴),

which implies
x⊤𝐴x ≥ 𝛼‖x‖2,

where 𝛼 = 𝜆min(𝐴) > 0. Therefore,

𝑓(x) = x⊤𝐴x + 2b⊤x + 𝑐 ≥ 𝛼‖x‖2 − 2‖b‖‖x‖ + 𝑐.

Using the Cauchy-Schwarz inequality and taking the limit as ‖x‖ → ∞, it follows that 𝑓(x) → ∞,
showing that 𝑓 is coercive.

Necessity: Assume 𝑓 is coercive. We will prove that 𝐴 is positive definite. Suppose for
contradiction that 𝐴 is not positive definite, then there exists an eigenvalue 𝜆 ≤ 0 and an associated
eigenvector v ≠ 0 ∈ ℝ𝑛 such that 𝐴v = 𝜆v. Consider the function

𝑓(𝑎v) = 𝑎2𝜆‖v‖2 + 2𝑎(b⊤v) + 𝑐.

If b⊤v = 0, then 𝑓(𝑎v) → 𝑐, and if b⊤v ≠ 0, 𝑓(𝑎v) → −∞ or ∞, contradicting the assumption
that 𝑓 is coercive. Thus, 𝐴 must be positive definite.

If 𝑓 is not a quadratic function but is strongly convex, then it is also coercive.

2.11 Theorem (Attainment of Global Optima Points for Coercive Functions)

Let 𝑓 ∶ ℝ𝑛 → ℝ be a continuous and coercive function and let 𝑆 ⊆ ℝ𝑛 be a nonempty closed
set. Then 𝑓 attains a global minimum point on 𝑆.

2.12 Theorem (Global Optimality Condition)

Let 𝑓 be a twice continuously differentiable function defined over ℝ𝑛. Suppose that ∇2𝑓(x) ⪰ 0
for any x ∈ ℝ𝑛. Let x∗ ∈ ℝ𝑛 be a stationary point of 𝑓 . Then x∗ is a global minimum point of 𝑓 .
Proof (using Taylor expansion)
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2.13 Definition (Quadratic Function)

A quadratic function over ℝ𝑛 is a function of the form

𝑓(x) = x⊤𝐴x + 2b⊤x + 𝑐,

where 𝐴 ∈ ℝ𝑛×𝑛 is symmetric, b ∈ ℝ𝑛, and 𝑐 ∈ ℝ.

∇𝑓(x) = 2𝐴x + 2b, ∇2𝑓(x) = 2𝐴.

2.14 Lemma

Let 𝑓(x) = x⊤𝐴x + 2b⊤x + 𝑐 (𝐴 ∈ ℝ𝑛×𝑛 sym., b ∈ ℝ𝑛, 𝑐 ∈ ℝ).

1. x is a stationary point of 𝑓 iff 𝐴x = −b.

2. If 𝐴 ⪰ 0, then x is a global minimum point of 𝑓 iff 𝐴x = −b.

3. If 𝐴 ≻ 0, then x = −𝐴−1b is a strict global minimum point of 𝑓 .

2.15 Lemma (coerciveness of quadratic functions)

Let 𝑓(x) = x⊤𝐴x + 2b⊤x + 𝑐 where 𝐴 ∈ ℝ𝑛×𝑛 is symmetric, b ∈ ℝ𝑛 and 𝑐 ∈ ℝ. Then 𝑓 is
coercive if and only if 𝐴 ≻ 0.

2.16 Theorem (characterization of the nonnegativity of quadratic functions)

𝑓(x) = x⊤𝐴x+2b⊤x+𝑐 where 𝐴 ∈ ℝ𝑛×𝑛 is symmetric, b ∈ ℝ𝑛 and 𝑐 ∈ ℝ. Then the following
two claims are equivalent:

(i) 𝑓(x) = x⊤𝐴x + 2b⊤x + 𝑐 ≥ 0 for all x ∈ ℝ𝑛.

(ii)

⎛⎜
⎝

𝐴 b
b⊤ 𝑐

⎞⎟
⎠

⪰ 0.
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3 Least Squares

3.1 The least squares

To find the solution x𝐿𝑆 that minimizes the quadratic function for the least squares (LS)
problem, we need to solve the following optimization problem:

min
x

𝑓(x) = x⊤A⊤Ax − 2b⊤Ax + ‖b‖2

Step 1: Take the gradient of 𝑓(x)
The gradient of the function 𝑓(x) with respect to x is computed as:

∇x𝑓(x) = 2A⊤Ax − 2A⊤b

Step 2: Set the gradient to zero
To find the critical point, we set the gradient equal to zero:

2A⊤Ax − 2A⊤b = 0

Step 3: Solve for x
Simplifying the above equation:

A⊤Ax = A⊤b

This is a system of linear equations. Assuming A⊤A is invertible, we can solve for x by
multiplying both sides by the inverse of A⊤A:

x𝐿𝑆 = (A⊤A)−1A⊤b

Thus, the least-squares solution is:

x𝐿𝑆 = (A⊤A)−1A⊤b

3.2 Definition (Regularized Least Squares)

There are several situations in which the least squares solution does not give rise to a good
estimate of the “true”vector x. In these cases, a regularized problem (called regularized least
squares (RLS)) is often solved:

(RLS) min
x

‖Ax − b‖2 + 𝜆𝑅(x).

Here 𝜆 > 0 is the regularization parameter and 𝑅(⋅) is the regularization function (also called
a penalty function). Quadratic regularization is a specific choice of regularization function:

min
x

‖Ax − b‖2 + 𝜆‖Dx‖2.
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The optimal solution of the above problem is

xRLS = (A⊤A + 𝜆D⊤D)−1 A⊤b.

How to assure that A⊤A + 𝜆D⊤D is invertible? (answer: Null(A) ∩ Null(D) = {0})

3.3 Definition (Nonlinear Least Squares)

Given 𝑚 points a1,a2,… ,a𝑚 ∈ ℝ𝑛, the goal is to find a circle 𝐶(x, 𝑟) defined by a center
x ∈ ℝ𝑛 and radius 𝑟 ∈ ℝ+ that best fits these points. The equation of the circle is:

𝐶(x, 𝑟) = {y ∈ ℝ𝑛 ∶ ‖y − x‖ = 𝑟}

To approximate the circle fitting, we start by minimizing the distance from each point a𝑖 to
the circle, giving:

‖x − a𝑖‖ ≈ 𝑟, 𝑖 = 1, 2,… ,𝑚

Squaring both sides to avoid nondifferentiability:

‖x − a𝑖‖2 ≈ 𝑟2, 𝑖 = 1, 2,… ,𝑚

The problem can now be formulated as a nonlinear least squares minimization:

min
x∈ℝ𝑛,𝑟∈ℝ+

𝑚
∑
𝑖=1

(‖x − a𝑖‖2 − 𝑟2)2

Expanding the terms gives:

min
x,𝑟

𝑚
∑
𝑖=1

(−2a⊤
𝑖 x + ‖x‖2 − 𝑟2 + ‖a𝑖‖2)

2

Introducing the new variable 𝑅 = ‖x‖2 − 𝑟2, the problem becomes:

min
x,𝑅

𝑚
∑
𝑖=1

(−2a⊤
𝑖 x +𝑅 + ‖a𝑖‖2)

2

The constraint ‖x‖2 ≥ 𝑅 can be dropped because any optimal solution (x̂, 𝑅̂) automatically
satisfies it.

Thus, the final circle fitting least squares (CF-LS) formulation is:

min
x,𝑅

𝑚
∑
𝑖=1

(−2a⊤
𝑖 x +𝑅 + ‖a𝑖‖2)

2
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4 Gradient

4.1 Definition (The Gradient Method)

Objective: find an optimal solution of the problem

min{𝑓(x) ∶ x ∈ ℝ𝑛}

The iterative algorithms we consider are of the form

x𝑘+1 = x𝑘 + 𝑡𝑘d𝑘, 𝑘 = 0, 1,…

• d𝑘 - direction.

• 𝑡𝑘 - stepsize.

4.2 Stepsize Selection Rules

• Constant stepsize - 𝑡𝑘 = ̄𝑡 for any 𝑘.

• Exact stepsize - 𝑡𝑘 is a minimizer of 𝑓 along the ray x𝑘 + 𝑡d𝑘:

𝑡𝑘 ∈ arg min
𝑡≥0

𝑓(x𝑘 + 𝑡d𝑘)

The second strategy is completely theoretical. It is never used in practice since even in one
dimensional case we cannot find the exact minimum in finite time.

• Backtracking - requires three parameters:
𝑠 > 0, 𝛼 ∈ (0, 1), 𝛽 ∈ (0, 1). Here start with an initial stepsize 𝑡𝑘 = 𝑠.
While

𝑓(x𝑘) − 𝑓(x𝑘 + 𝑡𝑘d𝑘) < −𝛼𝑡𝑘∇𝑓(x𝑘)⊤d𝑘,

set 𝑡𝑘 ∶= 𝛽𝑡𝑘.
Sufficient Decrease Property:

𝑓(x𝑘) − 𝑓(x𝑘 + 𝑡𝑘d𝑘) ≥ −𝛼𝑡𝑘∇𝑓(x𝑘)⊤d𝑘.

4.3 Direction

d𝑘 = −∇𝑓(x𝑘).
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4.3.1 Lemma

Let 𝑓 be a continuously differentiable function and let x ∈ ℝ𝑛 be a non-stationary point
(∇𝑓(x) ≠ 0). Then an optimal solution of

min
d

{𝑓 ′(x;d) ∶ ‖d‖ = 1}

is d = − ∇𝑓(x)
‖∇𝑓(x)‖ .

4.4 Exact Line Search

4.4.1 Algorithm

Algorithm 1 The Gradient Method
0: Input: 𝜖 > 0 - tolerance parameter.
0: Initialization: pick x0 ∈ ℝ𝑛 arbitrarily.
0: for 𝑘 = 0, 1, 2,… do
0: pick a stepsize 𝑡𝑘 by a line search procedure on the function

𝑔(𝑡) = 𝑓(x𝑘 − 𝑡∇𝑓(x𝑘)).

0: set x𝑘+1 = x𝑘 − 𝑡𝑘∇𝑓(x𝑘).
0: if ‖∇𝑓(x𝑘+1)‖ ≤ 𝜖 then
0: then STOP and x𝑘+1 is the output.
0: end if
0: end for=0

4.4.2 Example

min𝑥2 + 2𝑦2

x0 = (2, 1), 𝜖 = 10−5, exact line search.

4.4.3 Lemma

Let {x𝑘}𝑘≥0 be the sequence generated by the gradient method with exact line search for solving
a problem of minimizing a continuously differentiable function 𝑓 . Then for any 𝑘 = 0, 1, 2,…

(x𝑘+2 − x𝑘+1)⊤(x𝑘+1 − x𝑘) = 0.

4.4.4 Proof

x𝑘+1 − x𝑘 = −𝑡𝑘∇𝑓(x𝑘), x𝑘+2 − x𝑘+1 = −𝑡𝑘+1∇𝑓(x𝑘+1)
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Therefore, need to prove
∇𝑓(x𝑘)⊤∇𝑓(x𝑘+1) = 0.

𝑡𝑘 ∈ arg min
𝑡≥0

{𝑔(𝑡) ≡ 𝑓(x𝑘 − 𝑡∇𝑓(x𝑘))}

Hence, 𝑔′(𝑡𝑘) = 0
−∇𝑓(x𝑘)⊤∇𝑓(x𝑘 − 𝑡𝑘∇𝑓(x𝑘)) = 0

∇𝑓(x𝑘)⊤∇𝑓(x𝑘+1) = 0

4.5 Lipschitz Continuity of the Gradient

4.5.1 Definition

Let 𝑓 be a continuously differentiable function over ℝ𝑛. Say that 𝑓 has a Lipschitz gradient if
there exists 𝐿 ≥ 0 for which

‖∇𝑓(x) − ∇𝑓(y)‖ ≤ 𝐿‖x − y‖

for any x,y ∈ ℝ𝑛.
𝐿 is called the Lipschitz constant.

• If ∇𝑓 is Lipschitz with constant 𝐿, then it is also Lipschitz with constant 𝐿̃ for all 𝐿̃ ≥ 𝐿.

• The class of functions with Lipschitz gradient with constant 𝐿 is denoted by 𝐶1,1
𝐿 (ℝ𝑛) or just

𝐶1,1
𝐿 .

4.5.2 Remark

Here the first ”1” means that 𝑓 is first-order differentiable or has first-order smoothness. Lip-
schitz continuity can be viewed as “1-Half Order” smoothness between 𝐶1 and 𝐶2.

𝐶𝑘,𝛼 is a widely used notation to describe finer levels of smoothness:

• 𝐶𝑘: The function has 𝑘-th order continuous derivatives.
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• 𝐶𝑘,𝛼: The 𝑘-th derivative satisfies Hölder continuity with an exponent 𝛼 ∈ (0, 1].

– Hölder continuity is defined as:

‖𝑓 (𝑘)(𝑥) − 𝑓 (𝑘)(𝑦)‖ ≤ 𝐶‖𝑥 − 𝑦‖𝛼,

where 𝛼 = 1 corresponds to Lipschitz continuity.

4.5.3 Example

• Linear functions - Given a ∈ ℝ𝑛, the function 𝑓(x) = a⊤x is in 𝐶1,1
0 .

• Quadratic functions - Let A be a symmetric 𝑛 × 𝑛 matrix, b ∈ ℝ𝑛, and 𝑐 ∈ ℝ. Then the
function

𝑓(x) = x⊤Ax + 2b⊤x + 𝑐

is a 𝐶1,1 function. The smallest Lipschitz constant of ∇𝑓 is 2‖A‖2.

4.5.4 Theorem (Equivalence to Boundedness of the Hessian)

Let 𝑓 be a twice continuously differentiable function over ℝ𝑛. Then the following two claims
are equivalent:

1. 𝑓 ∈ 𝐶1,1
𝐿 (ℝ𝑛)

2. ‖∇2𝑓(x)‖ ≤ 𝐿 for any x ∈ ℝ𝑛

4.6 Convergence

4.6.1 Lemma (Descent Lemma)

Let 𝐷 ⊆ ℝ𝑛 and 𝑓 ∈ 𝐶1,1
𝐿 (𝐷) for some 𝐿 > 0. Then for any x,y ∈ 𝐷 satisfying [x,y] ⊆ 𝐷 it

holds that
𝑓(y) ≤ 𝑓(x) + ∇𝑓(x)⊤(y − x) + 𝐿

2 ‖x − y‖2.

4.6.2 Lemma (Sufficient Decrease Lemma)

Suppose that 𝑓 ∈ 𝐶1,1
𝐿 (𝐷) for some 𝐿 > 0. Then for any x ∈ ℝ𝑛 and 𝑡 > 0

𝑓(x) − 𝑓(x − 𝑡∇𝑓(x)) ≥ 𝑡(1 − 𝐿𝑡
2 ) ‖∇𝑓(x)‖2.

4.6.3 Lemma (Sufficient Decrease of the Gradient Method)

Let 𝑓 ∈ 𝐶1,1
𝐿 (𝐷). Let {x𝑘}𝑘≥0 be the sequence generated by GM for solving minx∈ℝ𝑛 𝑓(x) with

one of the following stepsize strategies:

• constant stepsize ̄𝑡 ∈ (0, 2
𝐿)

• exact line search

• backtracking procedure with parameters 𝑠 > 0 and 𝛼, 𝛽 ∈ (0, 1)
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Then
𝑓(x𝑘) − 𝑓(x𝑘+1) ≥ 𝑀‖∇𝑓(x𝑘)‖2,

where

𝑀 =

⎧{{
⎨{{⎩

̄𝑡 (1 − ̄𝑡𝐿
2 ) constant stepsize

1
2𝐿 exact line search

𝛼min{𝑠, 2(1−𝛼𝛽)
𝐿 } backtracking

4.6.4 Theorem (Rate of Convergence of Gradient Norms)

Under the setting of Theorem 4.25, let 𝑓∗ be the limit of the convergent sequence {𝑓(x𝑘)}𝑘≥0.
Then for any 𝑛 = 0, 1, 2,… ,

min
𝑘=0,1,…,𝑛

‖∇𝑓(x𝑘)‖ ≤ √𝑓(x0) − 𝑓∗

𝑀(𝑛 + 1) .

4.6.5 Theorem (The Effect of Range of Eigenvalue on Convergence Rate)

Let {x𝑘}𝑘≥0 be the sequence generated by the gradient method with exact line search for
solving the problem

min
x∈ℝ𝑛

x⊤𝐴x (𝐴 ⪰ 0)

Then for any 𝑘 = 0, 1,… ,

𝑓(x𝑘+1) ≤ (𝑀 −𝑚
𝑀 +𝑚)

2
𝑓(x𝑘)

where 𝑀 = 𝜆max(𝐴), 𝑚 = 𝜆min(𝐴).

4.6.6 Lemma (Kantorovich Inequality)

Let A be a positive definite 𝑛 × 𝑛 matrix. Then for any 0 ≠ x ∈ ℝ𝑛, the inequality

(x⊤x)2
(x⊤Ax)(x⊤A−1x) ≥ 4𝜆max(A)𝜆min(A)

(𝜆max(A) + 𝜆min(A))2

holds.

4.6.7 Definition (The Condition Number)

Let A be a positive definite 𝑛 × 𝑛 matrix. Then the condition number of A is defined by

𝜅(A) = 𝜆max(A)
𝜆min(A) .

• Matrices (or quadratic functions) with large condition number are called ill-conditioned.

• Matrices with small condition number are called well-conditioned.

• Large condition number implies large number of iterations of the gradient method.

• Small condition number implies small number of iterations of the gradient method.
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• For a non-quadratic function, the asymptotic rate of convergence of x𝑘 to a stationary point
x∗ is usually determined by the condition number of ∇2𝑓(x∗).

4.6.8 Proposition (Perturbation and condition number)

Suppose that we are given the linear system

Ax = b

where A ≻ 0 and assume that x is indeed the solution of the system (x = A−1b).
Suppose that the right-hand side is perturbed b + Δb. What can be said on the solution of

the new system x +Δx?
Δx = A−1Δb.

Result:
‖Δx‖
‖x‖ ≤ 𝜅(A)‖Δb‖

‖b‖ .

4.7 Scaled Gradient Method

Consider the minimization problem

(𝑃 ) min{𝑓(x) ∶ x ∈ ℝ𝑛}.

For a given nonsingular matrix S ∈ ℝ𝑛×𝑛, we make the linear change of variables x = Sy, and
obtain the equivalent problem

(𝑃 ′) min{𝑔(y) ≡ 𝑓(Sy) ∶ y ∈ ℝ𝑛}.

Since ∇𝑔(y) = S⊤∇𝑓(Sy) = S⊤∇𝑓(x), the gradient method for (𝑃 ′) is

y𝑘+1 = y𝑘 − 𝑡𝑘S⊤∇𝑓(Sy𝑘).

Multiplying the latter equality by S from the left, and using the notation x𝑘 = Sy𝑘:

x𝑘+1 = x𝑘 − 𝑡𝑘SS⊤∇𝑓(x𝑘).

Defining D = SS⊤, we obtain the scaled gradient method:

x𝑘+1 = x𝑘 − 𝑡𝑘D∇𝑓(x𝑘).

D ≻ 0, so the direction −D∇𝑓(x𝑘) is a descent direction:

𝑓 ′(x𝑘; −D∇𝑓(x𝑘)) = −∇𝑓(x𝑘)⊤D∇𝑓(x𝑘) < 0.
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The scaled gradient method with scaling matrix D is equivalent to the gradient method employed
on the function 𝑔(y) = 𝑓(D1/2y). Note that the gradient and Hessian of 𝑔 are given by

∇𝑔(y) = D1/2∇𝑓(D1/2y) = D1/2∇𝑓(x)

∇2𝑔(y) = D1/2∇2𝑓(D1/2y)D1/2 = D1/2∇2𝑓(x)D1/2

The objective is usually to pick D𝑘 so as to make D1/2
𝑘 ∇2𝑓(x𝑘)D1/2

𝑘 as well-conditioned as possible.

4.7.1 Newton’s method

D𝑘 = (∇2𝑓(x𝑘))−1

4.7.2 Diagonal scaling

D𝑘 is picked to be diagonal. For example,

(D𝑘)𝑖𝑖 = (𝜕2𝑓(x𝑘)
𝜕𝑥2

𝑖
)

−1

Diagonal scaling can be very effective when the decision variables are of different magnitudes.

4.7.3 The Gauss-Newton Method

Nonlinear least squares problem:

(NLS) ∶ min
x∈ℝ𝑛

{𝑔(x) ≡
𝑚
∑
𝑖=1

(𝑓𝑖(x) − 𝑐𝑖)2}.

𝑓1,… , 𝑓𝑚 are continuously differentiable over ℝ𝑛 and 𝑐1,… , 𝑐𝑚 ∈ ℝ. Denote:

𝐹(x) =
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝑓1(x) − 𝑐1
𝑓2(x) − 𝑐2

⋮
𝑓𝑚(x) − 𝑐𝑚

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

Then the problem becomes:
min ‖𝐹(x)‖2

Given the 𝑘-th iterate x𝑘, the next iterate is chosen to minimize the sum of squares of the linearized
terms, that is,

x𝑘+1 = arg min
x∈ℝ𝑛

{
𝑚
∑
𝑖=1

[𝑓𝑖(x𝑘) + ∇𝑓𝑖(x𝑘)⊤(x − x𝑘) − 𝑐𝑖]
2}.

The general step actually consists of solving the linear LS problem:

min ‖A𝑘x − b𝑘‖2

24



where

A𝑘 =
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

∇𝑓1(x𝑘)⊤

∇𝑓2(x𝑘)⊤

⋮
∇𝑓𝑚(x𝑘)⊤

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

= 𝐽(x𝑘)

is the so-called Jacobian matrix, assumed to have full column rank, and

b𝑘 =
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

∇𝑓1(x𝑘)⊤x𝑘 − 𝑓1(x𝑘) + 𝑐1
∇𝑓2(x𝑘)⊤x𝑘 − 𝑓2(x𝑘) + 𝑐2

⋮
∇𝑓𝑚(x𝑘)⊤x𝑘 − 𝑓𝑚(x𝑘) + 𝑐𝑚

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

= 𝐽(x𝑘)x𝑘 − 𝐹(x𝑘).

The Gauss-Newton method can thus be written as below according to LSE normal equation:

x𝑘+1 = (𝐽(x𝑘)⊤𝐽(x𝑘))−1𝐽(x𝑘)⊤b𝑘

The GN method can be rewritten as follows:

x𝑘+1 = x𝑘 − (𝐽(x𝑘)⊤𝐽(x𝑘))−1𝐽(x𝑘)⊤𝐹(x𝑘)

= x𝑘 − 1
2(𝐽(x𝑘)⊤𝐽(x𝑘))−1∇𝑔(x𝑘)

Where the gradient of the objective function 𝑔(x) = ‖𝐹(x)‖2 is

∇𝑔(x) = 2𝐽(x)⊤𝐹(x)

That is, it is a scaled gradient method with a special choice of scaling matrix:

D𝑘 = 1
2(𝐽(x𝑘)⊤𝐽(x𝑘))−1

The Gauss-Newton method does not incorporate a stepsize, which might cause it to diverge. A
well-known variation of the method incorporating stepsizes is the damped Gauss-Newton Method.

4.7.4 Damped Gauss-Newton Method

1. Compute direction:
d𝑘 = −(𝐽(x𝑘)⊤𝐽(x𝑘))−1∇𝑔(x)

2. Determine step size 𝑡𝑘: Find the optimal step size 𝑡𝑘 along direction d𝑘 using a line search
method, minimize:

ℎ(𝑡) = 𝑔(x𝑘 + 𝑡d𝑘)

3. Update:
x𝑘+1 = x𝑘 + 𝑡𝑘d𝑘
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4.7.5 Fermat-Weber Problem

The Fermat-Weber problem is formulated as follows: Given 𝑚 points in ℝ𝑛: a1,… ,a𝑚, and
weights 𝜔1,… , 𝜔𝑚 > 0, the goal is to find a point x ∈ ℝ𝑛 that minimizes the weighted sum of
distances to these points:

min
x∈ℝ𝑛

{𝑓(x) =
𝑚
∑
𝑖=1

𝜔𝑖‖x − a𝑖‖}

4.7.6 Weiszfeld’s Method

Weiszfeld’s method is used to solve the Fermat-Weber problem iteratively. Starting with an
initial guess x0, the update at each iteration 𝑘 is given by:

x𝑘+1 = 𝑇(x𝑘) =
∑𝑚

𝑖=1
𝜔𝑖a𝑖

‖x𝑘−a𝑖‖
∑𝑚

𝑖=1
𝜔𝑖

‖x𝑘−a𝑖‖

This method is a fixed-point iteration and can be seen as a gradient method with a specific
step size determined by the weights and distances.
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5 Newton’s Method

5.1 Former Newton’s Method

Newton’s method is widely known as a technique for finding a root of a univariate function.
Let 𝜙(⋅) ∶ ℝ → ℝ. Consider the equation

𝜙(𝑡∗) = 0

Assume that we know some 𝑡 ∈ ℝ which is close to 𝑡∗. Note that

𝜙(𝑡 + Δ𝑡) = 𝜙(𝑡) + 𝜙′(𝑡)Δ𝑡 + 𝑜(|Δ𝑡|).

Therefore, the solution of the equation 𝜙(𝑡 + Δ𝑡) = 0 can be approximated by the solution of
the following linear equation:

𝜙(𝑡) + 𝜙′(𝑡)Δ𝑡 = 0

Δ = − 𝜙(𝑡)
𝜙′(𝑡)

We expect Δ𝑡 to be a good approximation to Δ𝑡∗ = 𝑡∗ − 𝑡

𝑡𝑘+1 = 𝑡𝑘 − 𝜙(𝑡𝑘)
𝜙′(𝑡𝑘)

5.2 Definition

In the unconstrained minimization problem, we want to find a root of the nonlinear system

∇𝑓(𝑥) = 0

Thus replace 𝑓(𝑥) with ∇𝑓(𝑥), the Newton system is as followes:

∇𝑓(𝑥) + ∇2𝑓(𝑥)Δ𝑥 = 0

The objective is to find an optimal solution of the problem

min{𝑓(x) ∶ x ∈ ℝ𝑛},

If ∇2𝑓(x𝑘) ≻ 0,
x𝑘+1 = x𝑘 − (∇2𝑓(x𝑘))

−1 ∇𝑓(x𝑘)

The vector −(∇2𝑓(x𝑘))
−1 ∇𝑓(x𝑘) is called Newton’s direction.

5.3 Convergence of Newton’s method

Let us derive the local rate of convergence of Newton’s Method. Consider the problem

min
𝑥∈ℝ𝑛

𝑓(𝑥)
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under the following assumptions:

1. 𝑓 ∈ 𝐶2,2
𝑀 (ℝ𝑛).

2. There exists a local minimum of the function 𝑓 with positive definite Hessian:

∇2𝑓(𝑥∗) ⪰ 𝜇𝐼𝑛, 𝜇 > 0. ((1))

3. Our starting point 𝑥0 is close enough to 𝑥∗.

Consider the process 𝑥𝑘+1 = 𝑥𝑘 − [∇2𝑓(𝑥𝑘)]−1∇𝑓(𝑥𝑘). Then, using the same reasoning as for
the Gradient Method, we obtain the following representation:

𝑥𝑘+1 − 𝑥∗ = 𝑥𝑘 − 𝑥∗ − [∇2𝑓(𝑥𝑘)]−1∇𝑓(𝑥𝑘)

= 𝑥𝑘 − 𝑥∗ − [∇2𝑓(𝑥𝑘)]−1 ∫
1

0
∇2𝑓(𝑥∗ + 𝜏(𝑥𝑘 − 𝑥∗))(𝑥𝑘 − 𝑥∗)𝑑𝜏

= [∇2𝑓(𝑥𝑘)]−1𝐺𝑘(𝑥𝑘 − 𝑥∗),

where 𝐺𝑘 = ∫1
0 [∇2𝑓(𝑥𝑘) − ∇2𝑓(𝑥∗ + 𝜏(𝑥𝑘 − 𝑥∗))]𝑑𝜏 .

Let 𝑟𝑘 = ‖𝑥𝑘 − 𝑥∗‖. Then

‖𝐺𝑘‖ = ∥∫
1

0
[∇2𝑓(𝑥𝑘) − ∇2𝑓(𝑥∗ + 𝜏(𝑥𝑘 − 𝑥∗))]𝑑𝜏∥

≤ ∫
1

0
‖∇2𝑓(𝑥𝑘) − ∇2𝑓(𝑥∗ + 𝜏(𝑥𝑘 − 𝑥∗))‖𝑑𝜏

≤ ∫
1

0
𝑀(1 − 𝜏)𝑟𝑘𝑑𝜏 = 𝑟𝑘𝑀

2 .

In view of relation (1), we have

∇2𝑓(𝑥𝑘) ⪰ ∇2𝑓(𝑥∗) −𝑀𝑟𝑘𝐼𝑛 ⪰ (𝜇 −𝑀𝑟𝑘)𝐼𝑛.

Therefore, if 𝑟𝑘 < 𝜇
𝑀 , then ∇2𝑓(𝑥𝑘) is positive definite and

‖[∇2𝑓(𝑥𝑘)]−1‖ ≤ (𝜇 −𝑀𝑟𝑘)−1.

Hence, for 𝑟𝑘 small enough (𝑟𝑘 ≤ 2𝜇
3𝑀 ), we have

𝑟𝑘+1 ≤ 𝑀𝑟2𝑘
2(𝜇 −𝑀𝑟𝑘)

(≤ 𝑟𝑘).

The rate of convergence of this type is called quadratic.
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5.3.1 Theorem

Let the function 𝑓(⋅) satisfy our assumptions. Suppose that the initial starting point 𝑥0 is close
enough to 𝑥∗:

‖𝑥0 − 𝑥∗‖ ≤ ̄𝑟 = 2𝜇
3𝑀 .

Then ‖𝑥𝑘 − 𝑥∗‖ ≤ ̄𝑟 for all 𝑘 and Newton’s Method converges quadratically:

‖𝑥𝑘+1 − 𝑥∗‖ ≤ 𝑀‖𝑥𝑘 − 𝑥∗‖2
2(𝜇 −𝑀‖𝑥𝑘 − 𝑥∗‖) .

5.4 Drawbacks of Newton’s Method

• It can break down if ∇2𝑓(𝑥𝑘) is degenerate.

• Newton’s process can diverge

5.4.1 Example

Let us apply Newton’s Method for finding a root of the following univariate function:

𝜙(𝑡) = 𝑡√
1 + 𝑡2

.

Clearly, 𝑡∗ = 0. Note that
𝜙′(𝑡) = 1

(1 + 𝑡2)3/2 .

Therefore, Newton’s process is as follows:

𝑡𝑘+1 = 𝑡𝑘 − 𝜙(𝑡𝑘)
𝜙′(𝑡𝑘)

= 𝑡𝑘 − 𝑡𝑘
√1+ 𝑡2𝑘

⋅ (1 + 𝑡2𝑘)3/2 = −𝑡3𝑘.

Thus, if |𝑡0| < 1, then this method converges, and the convergence is extremely fast. The
points ±1 are oscillation points of this scheme. If |𝑡0| > 1, then the method diverges.

5.5 Damped Newton’s Method

In order to avoid a possible divergence, in practice we can apply the damped Newton’s method:

𝑥𝑘+1 = 𝑥𝑘 − ℎ𝑘[∇2𝑓(𝑥𝑘)]−1∇𝑓(𝑥𝑘),

where ℎ𝑘 > 0 is a step size parameter. At the initial stage of the method, we can use the same
step size strategies as for the gradient scheme. At the final stage, it is reasonable to choose ℎ𝑘 = 1.
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6 Convex Sets

6.1 Definition

A set 𝐶 ⊆ ℝ𝑛 is called convex if for any x,y ∈ 𝐶 and 𝜆 ∈ [0, 1], the point 𝜆x+(1−𝜆)y belongs
to 𝐶.

6.2 Theorem (Convexity Preservation)

1. Let 𝐶1, 𝐶2,… ,𝐶𝑘 ⊆ ℝ𝑛 be convex sets and let 𝜇1, 𝜇2,… , 𝜇𝑘 ∈ ℝ. Then the set 𝜇1𝐶1 +𝜇2𝐶2 +
⋯+ 𝜇𝑘𝐶𝑘 is convex.

2. Let 𝐶𝑖 ⊆ ℝ𝑘𝑖 , 𝑖 = 1, 2,… ,𝑚 be convex sets. Then the Cartesian product

𝐶1 ×𝐶2 ×⋯×𝐶𝑚 = {(x1,x2,… ,x𝑚) ∶ x𝑖 ∈ 𝐶𝑖, 𝑖 = 1, 2,… ,𝑚}

is convex.

3. Let 𝑀 ⊆ ℝ𝑛 be a convex set and let A ∈ ℝ𝑚×𝑛. Then the set

A(𝑀) = {Ax ∶ x ∈ 𝑀}

is convex.

4. Let 𝐷 ⊆ ℝ𝑚 be a convex set and let A ∈ ℝ𝑚×𝑛. Then the set

A−1(𝐷) = {x ∈ ℝ𝑛 ∶ Ax ∈ 𝐷}

is convex.

6.3 Theorem (Convex Combinations)

Let 𝐶 ⊆ ℝ𝑛 be a convex set and let x1,x2,… ,x𝑚 ∈ 𝐶. Then for any 𝜆 ∈ Δ𝑚, the relation
∑𝑚

𝑖=1 𝜆𝑖x𝑖 ∈ 𝐶 holds.

6.4 Definition (Convex Hull, 凸包)

Let 𝑆 ⊆ ℝ𝑛. The convex hull of 𝑆, denoted by conv(𝑆), is the set comprising all the convex
combinations of vectors from 𝑆:

conv(𝑆) ≡ {
𝑘

∑
𝑖=1

𝜆𝑖x𝑖 ∶ x1,x2,… ,x𝑘 ∈ 𝑆, 𝜆 ∈ Δ𝑘, 𝑘 ∈ ℕ} .

6.5 Lemma

Let 𝑆 ⊆ ℝ𝑛. If 𝑆 ⊆ 𝑇 for some convex set 𝑇 , then conv(𝑆) ⊆ 𝑇 .
(The convex hull conv(𝑆) is the “smallest” convex set containing 𝑆.)
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6.6 Theorem (Caratheodory Theorem)

Let 𝑆 ⊆ ℝ𝑛 and let x ∈ conv(𝑆). Then there exist x1,x2,… ,x𝑛+1 ∈ 𝑆 such that x ∈
conv({x1,x2,… ,x𝑛+1}), that is, there exist 𝜆 ∈ Δ𝑛+1 such that

x =
𝑛+1
∑
𝑖=1

𝜆𝑖x𝑖.

Carathéodory 定理的核心思想：在 𝑛-维空间中，任意一个在凸包中的点 𝑥，都可以由最多
𝑛 + 1 个点的凸组合来表示。即使原集合 𝑆 非常大，描述 𝑥 只需要最多 𝑛 + 1 个点。
为什么是 n+1 个点？凸包在形成 𝑑 维体时需要牺牲一个自由度，因此需要 𝑑 + 1 个点.

6.7 Definition (Cones, 锥)

A set 𝑆 is called a cone if it satisfies the following property: For any x ∈ 𝑆 and 𝜆 ≥ 0, the
inclusion 𝜆x ∈ 𝑆 is satisfied.
不难发现，锥一定包括原点。

6.8 Lemma

A set 𝑆 is a convex cone if and only if the following properties hold:

1. x,y ∈ 𝑆 ⟹ x + y ∈ 𝑆.

2. x ∈ 𝑆, 𝜆 ≥ 0 ⟹ 𝜆x ∈ 𝑆.

6.9 Examples

• The convex polyhedron
𝐶 = {x ∈ ℝ𝑛 ∶ Ax ≤ 0}

where A ∈ ℝ𝑚×𝑛.

• The Lorenz cone, or ice cream cone, is given by

𝐿𝑛 =
⎧{
⎨{⎩
⎛⎜
⎝

x
𝑡
⎞⎟
⎠

∈ ℝ𝑛+1 ∶ ‖x‖ ≤ 𝑡,x ∈ ℝ𝑛, 𝑡 ∈ ℝ
⎫}
⎬}⎭

.

• Nonnegative polynomials: set consisting of all possible coefficients of polynomials of degree
𝑛 − 1 which are nonnegative over ℝ:

𝐾𝑛 = {x ∈ ℝ𝑛 ∶ 𝑥1𝑡𝑛−1 + 𝑥2𝑡𝑛−2 +⋯+ 𝑥𝑛 ≥ 0,∀𝑡 ∈ ℝ} .

6.10 Definition (Conic Combination)

Given 𝑚 points x1,x2,… ,x𝑚 ∈ ℝ𝑛, a conic combination of these 𝑚 points is a vector of the
form

𝜆1x1 + 𝜆2x2 +⋯+ 𝜆𝑚x𝑚,

31



where 𝜆 ∈ ℝ𝑚
+ .

6.11 Three Kinds of Combination

• Affine: affine set: 𝜃𝑥 + (1 − 𝜃)𝑥

• Convex: convex set: 𝜃 ∈ [0, 1]

• Conic: convex cone: 𝜃1𝑥 + 𝜃2𝑦

6.12 Definition (The Conic Hull, 锥包)

Let 𝑆 ⊆ ℝ𝑛. Then the conic hull of 𝑆, denoted by cone(𝑆), is the set comprising all the conic
combinations of vectors from 𝑆:

cone(𝑆) ≡ {
𝑘

∑
𝑖=1

𝜆𝑖x𝑖 ∶ x1,x2,… ,x𝑘 ∈ 𝑆, 𝜆 ∈ ℝ𝑘
+}.

注意锥包和凸包的区别。

6.13 Lemma

Let 𝑆 ⊆ ℝ𝑛. If 𝑆 ⊆ 𝑇 for some convex cone 𝑇 , then cone(𝑆) ⊆ 𝑇 .
(The conic hull of a set S is the smallest convex cone containing S.)

6.14 Theorem (Conic Representation Theorem)

Let 𝑆 ⊆ ℝ𝑛 and let x ∈ cone(𝑆). Then there exist 𝑘 linearly independent vectors x1,x2,… ,x𝑘 ∈
𝑆 such that x ∈ cone({x1,x2,… ,x𝑘}), that is, there exist 𝜆 ∈ ℝ𝑘

+ such that

x =
𝑘

∑
𝑖=1

𝜆𝑖x𝑖.

In particular, 𝑘 ≤ 𝑛.

6.15 Definition (Basic Feasible Solutions of LP)

Consider the convex polyhedron.

𝑃 = {𝑥 ∈ ℝ𝑛 ∶ 𝐴𝑥 = 𝑏, 𝑥 ≥ 0}, (𝐴 ∈ ℝ𝑚×𝑛, 𝑏 ∈ ℝ𝑚)

The rows of A are assumed to be linearly independent. The above is a standard formulation
of the constraints of a linear programming problem.

x̄ is a basic feasible solution (bfs) of 𝑃 if the columns of A corresponding to the indices of
the positive values of x̄ are linearly independent. 线性无关性保证了这个解是一个极端点（extreme
point）
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6.16 Proof

If 𝑃 ≠ ∅, then there exists x ∈ 𝑃 , meaning that Ax = b and x ≥ 0. This implies that
b ∈ cone({a1,a2,… ,a𝑛}), where a𝑖 denotes the 𝑖-th column of A.

By the conic representation theorem, there exist indices 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘 and 𝑘 numbers
𝑦𝑖1 , 𝑦𝑖2 ,… , 𝑦𝑖𝑘 ≥ 0 such that

b =
𝑘

∑
𝑗=1

𝑦𝑖𝑗a𝑖𝑗 and a𝑖1 ,a𝑖2 ,… ,a𝑖𝑘 are linearly independent.

Now, define x̄ = ∑𝑘
𝑗=1 𝑦𝑗e𝑖𝑗 , where e𝑖𝑗 is the 𝑖𝑗-th standard unit vector in ℝ𝑛. Clearly, x̄ ≥ 0

and

Ax̄ =
𝑘

∑
𝑗=1

𝑦𝑗Ae𝑖𝑗 =
𝑘

∑
𝑗=1

𝑦𝑗a𝑖𝑗 = b.

Therefore, x̄ is contained in 𝑃 , and since the columns of A corresponding to the positive
components of x̄ are linearly independent, it follows that x̄ is a basic feasible solution.

6.17 Theorem

Let 𝐶 ⊆ ℝ𝑛 be a convex set. Then cl(𝐶) is a convex set.

6.18 Proof

Let x,y ∈ cl(𝐶) and let 𝜆 ∈ [0, 1].
Since x,y ∈ cl(𝐶), there exist sequences {x𝑘}𝑘≥0 ⊆ 𝐶 and {y𝑘}𝑘≥0 ⊆ 𝐶 such that x𝑘 → x and

y𝑘 → y as 𝑘 → ∞.
Define z𝑘 = 𝜆x𝑘 + (1 − 𝜆)y𝑘. Since 𝐶 is convex, we know that:

z𝑘 ∈ 𝐶 ∀𝑘.

Next, we compute the limit of z𝑘:

lim
𝑘→∞

z𝑘 = 𝜆x + (1 − 𝜆)y.

Since 𝐶 ⊆ cl(𝐶) and cl(𝐶) is closed, the limit of the sequence z𝑘 ∈ 𝐶 also lies in cl(𝐶).
Therefore:

𝜆x + (1 − 𝜆)y ∈ cl(𝐶).

Thus, cl(𝐶) is convex.

6.19 Theorem (The Line Segment Principle)

Let 𝐶 be a convex set and assume that int(𝐶) ≠ ∅. Suppose that x ∈ int(𝐶) and y ∈ cl(𝐶).
Then (1 − 𝜆)x + 𝜆y ∈ int(𝐶) for any 𝜆 ∈ [0, 1).
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6.20 Theorem (Convexity of the Interior)

Let 𝐶 ⊆ ℝ𝑛 be a convex set. Then int(𝐶) is convex.

6.21 Lemma (Combination of Closure and Interior)

Let 𝐶 be a convex set with a nonempty interior. Then

1. cl(int(𝐶)) = cl(𝐶).

2. int(cl(𝐶)) = int(𝐶).

6.22 Theorem (Compactness of the Convex Hull of a Compact Set)

Let 𝑆 ⊆ ℝ𝑛 be a compact set. Then conv(𝑆) is compact.

6.23 Definition (Extreme Points)

Let 𝑆 ⊆ ℝ𝑛 be a convex set. A point x ∈ 𝑆 is called an extreme point of 𝑆 if there do not exist
x1,x2 ∈ 𝑆 (x1 ≠ x2) and 𝜆 ∈ (0, 1), such that

x = 𝜆x1 + (1 − 𝜆)x2.

The set of extreme points is denoted by ext(𝑆).
For example, the set of extreme points of a convex polytope (bounded polyhedron) consists of

all its vertices.

6.24 Theorem (Equivalence Between bfs’s and Extreme Points)

Let 𝑃 = {x ∈ ℝ𝑛 ∶ Ax = b,x ≥ 0}, where A ∈ ℝ𝑚×𝑛 has linearly independent rows and
b ∈ ℝ𝑚. Then x̄ is a basic feasible solution of 𝑃 if and only if it is an extreme point of 𝑃 .

6.25 Theorem (Krein-Milman Theorem)

Let 𝑆 ⊆ ℝ𝑛 be a compact convex set. Then

𝑆 = conv(ext(𝑆)).
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7 Convex Functions

7.1 Definition

A function 𝑓 ∶ 𝐶 → ℝ defined on a convex set 𝐶 ⊆ ℝ𝑛 is called convex (or convex over 𝐶) if

𝑓(𝜆x + (1 − 𝜆)y) ≤ 𝜆𝑓(x) + (1 − 𝜆)𝑓(y)

for any x,y ∈ 𝐶, 𝜆 ∈ [0, 1].

7.2 Examples

Affine Functions. 𝑓(x) = a⊤x + b, where a ∈ ℝ𝑛 and b ∈ ℝ.
Norms. 𝑔(x) = ‖x‖.

7.3 Theorem (Jensen’s Inequality)

Let 𝑓 ∶ 𝐶 → ℝ be a convex function where 𝐶 ⊆ ℝ𝑛 is a convex set. Then for any x1,x2,… ,x𝑘 ∈
𝐶 and 𝜆 ∈ Δ𝑘, the following inequality holds:

𝑓 (
𝑘

∑
𝑖=1

𝜆𝑖x𝑖) ≤
𝑘

∑
𝑖=1

𝜆𝑖𝑓(x𝑖).

想象一个两端含有极端值的凸函数。

7.4 Theorem (The Gradient Inequality)

Let 𝑓 ∶ 𝐶 → ℝ be a continuously differentiable function defined on a convex set 𝐶 ⊆ ℝ𝑛. Then
𝑓 is convex over 𝐶 if and only if

𝑓(y) ≥ 𝑓(x) + ∇𝑓(x)⊤(y − x) for any x,y ∈ 𝐶. (1)

7.4.1 Proof

Step 1: Using the definition of convex functions.
Let 𝑡 ∈ (0, 1), and set 𝑧 = 𝑥 + 𝑡(𝑦 − 𝑥). By the convexity of 𝑓 , we have:

𝑓(𝑧) = 𝑓(𝑥 + 𝑡(𝑦 − 𝑥)) ≤ 𝑡𝑓(𝑦) + (1 − 𝑡)𝑓(𝑥).

Step 2: Using the differentiability of 𝑓 at 𝑥.
Since 𝑓 is differentiable at 𝑥, 𝑓(𝑧) can be expanded as:

𝑓(𝑧) = 𝑓(𝑥 + 𝑡(𝑦 − 𝑥)) = 𝑓(𝑥) + ∇𝑓(𝑥)⊤(𝑡(𝑦 − 𝑥)) + 𝑜(𝑡).

Thus:
𝑓(𝑥 + 𝑡(𝑦 − 𝑥)) = 𝑓(𝑥) + 𝑡∇𝑓(𝑥)⊤(𝑦 − 𝑥) + 𝑜(𝑡).
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Step 3: Combining Step 1 and Step 2.
From convexity:

𝑓(𝑥) + 𝑡∇𝑓(𝑥)⊤(𝑦 − 𝑥) + 𝑜(𝑡) ≤ 𝑡𝑓(𝑦) + (1 − 𝑡)𝑓(𝑥).

Rearranging terms:
𝑡∇𝑓(𝑥)⊤(𝑦 − 𝑥) + 𝑜(𝑡) ≤ 𝑡𝑓(𝑦) − 𝑡𝑓(𝑥).

That is:
𝑡∇𝑓(𝑥)⊤(𝑦 − 𝑥) + 𝑜(𝑡) ≤ 𝑡(𝑓(𝑦) − 𝑓(𝑥)).

Step 4: Eliminating 𝑡 and taking the limit.
Divide through by 𝑡 (noting 𝑡 > 0) to get:

∇𝑓(𝑥)⊤(𝑦 − 𝑥) + 𝑜(𝑡)
𝑡 ≤ 𝑓(𝑦) − 𝑓(𝑥).

As 𝑡 → 0+, 𝑜(𝑡)
𝑡 → 0. Therefore:

∇𝑓(𝑥)⊤(𝑦 − 𝑥) ≤ 𝑓(𝑦) − 𝑓(𝑥).

Reorganizing, we obtain:
𝑓(𝑦) ≥ 𝑓(𝑥) + ∇𝑓(𝑥)⊤(𝑦 − 𝑥).

7.5 Proposition

Let 𝑓 be a continuously differentiable function which is convex over a convex set 𝐶 ⊆ ℝ𝑛.
Suppose that ∇𝑓(x∗) = 0 for some x∗ ∈ 𝐶. Then x∗ is the global minimizer of 𝑓 over 𝐶.

7.6 Theorem

Let 𝑓 ∶ ℝ𝑛 → ℝ be the quadratic function given by 𝑓(x) = x⊤Ax + 2b⊤x + 𝑐 where A ∈ ℝ𝑛×𝑛

is symmetric, b ∈ ℝ𝑛 and 𝑐 ∈ ℝ. Then 𝑓 is (strictly) convex if and only if A ⪰ 0 (A ≻ 0).

7.7 Theorem (Monotonicity of the Gradient)

Suppose that 𝑓 is a continuously differentiable function over a convex set 𝐶 ⊆ ℝ𝑛. Then 𝑓 is
convex over 𝐶 if and only if

(∇𝑓(x) − ∇𝑓(y))⊤(x − y) ≥ 0 for any x,y ∈ 𝐶.

一个凸函数的梯度总是“指向更高的位置”，或者说梯度的变化不会与路径的方向相反。
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7.8 Theorem (Second-Order Characterization of Convexity)

Suppose that 𝑓 is a twice continuously differentiable function over an open convex set 𝐶 ⊆ ℝ𝑛.
Then 𝑓 is convex over 𝐶 if and only if

∇2𝑓(x) ⪰ 0 for any x ∈ 𝐶.

7.9 Theorem (Operations Preserving Convexity)

• Let 𝑓 be a convex function defined over a convex set 𝐶 ⊆ ℝ𝑛 and let 𝛼 ≥ 0. Then 𝛼𝑓 is a
convex function over 𝐶.

• Let 𝑓1, 𝑓2,… , 𝑓𝑝 be convex functions over a convex set 𝐶 ⊆ ℝ𝑛. Then the sum function
𝑓1 + 𝑓2 +⋯+ 𝑓𝑝 is convex over 𝐶.

• Let 𝑓 be a convex function defined over a convex set 𝐶 ⊆ ℝ𝑛. Let A ∈ ℝ𝑛×𝑚 and b ∈ ℝ𝑛.
Then the function 𝑔 defined by

𝑔(y) = 𝑓(Ay + b)

is convex over the convex set 𝐷 = {y ∈ ℝ𝑚 ∶ Ay + b ∈ 𝐶}.

7.10 Definition (Perspective Transformation)

If 𝑓 ∶ ℝ𝑛 → ℝ, then the perspective of 𝑓 is the function 𝑔 ∶ ℝ𝑛+1 → ℝ defined by

𝑔(𝑥, 𝑡) = 𝑡𝑓(𝑥/𝑡),

with domain
dom 𝑔 = {(𝑥, 𝑡) ∣ 𝑥/𝑡 ∈ dom 𝑓, 𝑡 > 0}.

“Perspective” 一词来源于几何直观：想象 x 在一个“空间”中，𝑡 相当于焦距或相机的视角距
离；当我们固定一个正的 𝑡 时，就相当于在“深度”𝑡 的平面上看 x 的坐标，从而得到“透视”后
的值。

7.10.1 透视变换可以把非凸函数转换成凸函数

考虑以下非凸约束：

‖𝑥‖2 ≤ 𝑧2, 𝑧 > 0.

这个约束是非凸的，因为 ‖𝑥‖2 = 𝑧2 是一个锥体的边界，而 𝑧 > 0 的条件使其不对称。
通过透视变换凸化：

引入一个新变量 𝑡 > 0，定义：
‖𝑥‖2 ≤ 𝑡2𝑧, 𝑡 > 0.

转换为：

‖𝑥‖ ≤
√
𝑡𝑧, 𝑡 > 0,

该约束可以转化为 second-order cone 形式（SOC），从而成为凸约束。
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7.11 Theorem (Convexity of Perspective Functions)

Let 𝑓 ∶ ℝ𝑛 → ℝ be a convex function such that 𝑓(x) ≥ 0 for all x ∈ ℝ𝑛. Then, its perspective
transformation

ℎ(x, 𝑡) = 𝑓(x)
𝑡 , for 𝑡 > 0

is a convex function over the set {(x, 𝑡) ∈ ℝ𝑛 × ℝ>0}.
Furthermore, if 𝑡(x) = c⊤x + 𝑑 is an affine function that is strictly positive over a domain

𝐷 ⊂ ℝ𝑛, then the composite function

𝑔(x) = 𝑓(x)
𝑡(x) = 𝑓(x)

c⊤x + 𝑑

is convex over the domain 𝐷.

7.12 Theorem (Preservation of Convexity under Composition)

Let 𝑓 ∶ 𝐶 → ℝ be a convex function defined over the convex set 𝐶 ⊆ ℝ𝑛.
Let 𝑔 ∶ 𝐼 → ℝ be a one-dimensional nondecreasing convex function over the interval 𝐼 ⊆ ℝ.

Assume that the image of 𝐶 under 𝑓 is contained in 𝐼 ∶ 𝑓(𝐶) ⊆ 𝐼 .
Then the composition of 𝑔 with 𝑓 defined by ℎ(x) ≡ 𝑔(𝑓(x)) is convex over 𝐶.

7.13 Theorem (Point-Wise Maximum of Convex Functions)

Let 𝑓1, 𝑓2,… , 𝑓𝑝 ∶ 𝐶 → ℝ be 𝑝 convex functions over the convex set 𝐶 ⊆ ℝ𝑛.
Then the maximum function

𝑓(x) ≡ max
𝑖=1,2,…,𝑝

{𝑓𝑖(x)}

is convex over 𝐶.

7.14 Theorem (Preservation of Convexity Under Partial Minimization)

Let 𝑓 ∶ 𝐶×𝐷 → ℝ be a convex function defined over the set 𝐶×𝐷 where 𝐶 ⊆ ℝ𝑚 and 𝐷 ⊆ ℝ𝑛

are convex sets.
Let

𝑔(x) = min
y∈𝐷

𝑓(x,y), x ∈ 𝐶

where we assume that the minimum is finite. Then 𝑔 is convex over 𝐶.

7.15 Definition (Level Sets)

Let 𝑓 ∶ 𝑆 → ℝ be a function defined over a set 𝑆 ⊆ ℝ𝑛.
Then the level set of 𝑓 with level 𝛼 is given by

Lev(𝑓, 𝛼) = {x ∈ 𝑆 ∶ 𝑓(x) ≤ 𝛼}.
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7.16 Theorem (Level Sets)

Let 𝑓 ∶ 𝐶 → ℝ be a convex function over the convex set 𝐶 ⊆ ℝ𝑛. Then for any 𝛼 ∈ ℝ the level
set Lev(𝑓, 𝛼) is convex.

𝑓 convex ⟹ 𝐶𝛼 convex.
反过来说并不成立，可以想像一个向下的丁丁状函数。

7.17 Definition (Quasi-Convex Functions)

A function 𝑓 ∶ 𝐶 → ℝ defined over the convex set 𝐶 ⊆ ℝ𝑛 is called quasi-convex if for any
𝛼 ∈ ℝ the set Lev(𝑓, 𝛼) is convex.

Or
A function 𝑓 ∶ 𝐶 → ℝ is called a quasi-convex function on the convex set 𝐶 ⊆ ℝ𝑛 if, for any

x,y ∈ 𝐶 and 𝑡 ∈ [0, 1], the following inequality holds:

𝑓(𝑡x + (1 − 𝑡)y) ≤ max{𝑓(x), 𝑓(y)}.

7.18 Theorem (Lipschitz continuous on interior points)

Let 𝑓 ∶ 𝐶 → ℝ be a convex function defined over a convex set 𝐶 ⊆ ℝ𝑛. Let x0 ∈ int(𝐶). Then
there exist 𝜖 > 0 and 𝐿 > 0 such that 𝐵[x0, 𝜖] ⊆ 𝐶 and

|𝑓(x) − 𝑓(x0)| ≤ 𝐿‖x − x0‖ for any x ∈ 𝐵[x0, 𝜖].

7.19 Theorem (Existence of Directional Derivatives of Convex Functions)

Let 𝑓 ∶ 𝐶 → ℝ be a convex function over the convex set 𝐶 ⊆ ℝ𝑛. Let x ∈ int(𝐶). Then for
any d ≠ 0, the directional derivative 𝑓 ′(x;d) exists.

7.20 Properties of Extended-Valued Functions

The effective domain of an extended real-valued function is the set of vectors for which the
function takes a real value:

dom(𝑓) = {x ∈ ℝ𝑛 ∶ 𝑓(x) < ∞}.

An extended real-valued function 𝑓 ∶ ℝ𝑛 → ℝ is called proper if it is not always equal to infinity,
meaning that there exists x0 ∈ ℝ𝑛 such that 𝑓(x0) < ∞.

An extended real-valued function is convex if and only if dom(𝑓) is a convex set and the
restriction of 𝑓 to its effective domain is a convex real-valued function over dom(𝑓).

7.21 Definition (The Epigraph)

Let 𝑓 ∶ ℝ𝑛 → ℝ ∪ {∞}. Then its epigraph epi(𝑓) ⊆ ℝ𝑛+1 is defined to be the set

epi(𝑓) = {(x, 𝑡) ∶ 𝑓(x) ≤ 𝑡}.

An extended real-valued function 𝑓 is convex if and only if its epigraph set epi(𝑓) is convex.
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7.22 Proposition

If epi 𝑓 is a convex set, then at some point (𝑥0, 𝑓(𝑥0)), we can find a supporting hyperplane:

𝑎𝑇 (𝑥 − 𝑥0) + 𝑏[𝑡 − 𝑓(𝑥0)] ≤ 0,

which holds for all (𝑥, 𝑡) satisfying 𝑡 ≥ 𝑓(𝑥). Here, (𝑎, 𝑏) ∈ ℝ𝑛 × ℝ is the normal vector of the
hyperplane (nonzero).

7.23 Theorem (Preservation of Convexity Under Supremum)

Let 𝑓𝑖 ∶ ℝ𝑛 → ℝ be an extended real-valued convex function for any 𝑖 ∈ 𝐼 (𝐼 being an arbitrary
index set). Then the function 𝑓(x) = sup𝑖∈𝐼 𝑓𝑖(x) is an extended real-valued convex function.

7.24 Theorem (Maximum of a Convex Function over a Compact Convex
Set)

Let 𝑓 ∶ 𝐶 → ℝ be convex and continuous over the nonempty convex and compact set 𝐶 ⊆ ℝ𝑛.
Then there exists at least one maximizer of 𝑓 over 𝐶 that is an extreme point of 𝐶.

7.25 Conclusion of Convexity Check

• 定义法 or 𝑒𝑝𝑖(𝑓) or slices

• 二阶导法

• Convexity preservation (𝑓 is convex)

– 非负加权 ∑𝛼𝑖𝑓𝑗
– Composition 𝑓 ∘ 𝑔 with non-decreasing 𝑓 and convex 𝑔 or 𝑔 is affine

– 最大值 max 𝑓𝑖
– 固定参数最大化 𝑔(𝑥) = sup𝑦∈𝐶 𝑓(𝑥, 𝑦), 𝐶 is arbitary

– 固定参数最小化 when 𝑓 is jointly convex in both 𝑥 and 𝑦, and 𝐶 is convex. 𝑔(𝑥) =
inf𝑦∈𝐶 𝑓(𝑥, 𝑦)

7.26 Conjugate Function

Let 𝑓 ∶ ℝ𝑛 → R. The function 𝑓∗ ∶ ℝ𝑛 → R, defined as

𝑓∗(𝑦) = sup
𝑥∈dom𝑓

(𝑦𝑇𝑥 − 𝑓(𝑥)) ,

is called the conjugate of the function 𝑓 . The domain of the conjugate function consists of
𝑦 ∈ ℝ𝑛 for which the supremum is finite, i.e., for which the difference 𝑦𝑇𝑥−𝑓(𝑥) is bounded above
on dom 𝑓 . This definition is illustrated in figure.
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8 Convex Optimization

8.1 Definition

A convex optimization problem (or just a convex problem) is a problem consisting of minimizing
a convex function over a convex set:

min 𝑓(x)
s.t. x ∈ 𝐶

(1)

• 𝐶: convex set.

• 𝑓 : convex function over 𝐶.

A functional form of a convex problem can be written as

min 𝑓(x)
s.t. 𝑔𝑖(x) ≤ 0, 𝑖 = 1, 2,… ,𝑚,

ℎ𝑗(x) = 0, 𝑗 = 1, 2,… , 𝑝.

𝑓, 𝑔1,… , 𝑔𝑚 ∶ ℝ𝑛 → ℝ are convex functions and ℎ1, ℎ2,… , ℎ𝑝 ∶ ℝ𝑚 → ℝ are affine functions.

8.2 Theorem (Global Minimum of Convex Function)

Let 𝑓 ∶ 𝐶 → ℝ be a convex function defined on the convex set 𝐶 ⊆ ℝ𝑛. Let x∗ ∈ 𝐶 be a local
minimum of 𝑓 over 𝐶. Then x∗ is a global minimum of 𝑓 over 𝐶.

8.3 Theorem

Let 𝑓 ∶ 𝐶 → ℝ be a strictly convex function defined on the convex set 𝐶. Let x∗ ∈ 𝐶 be a local
minimum of 𝑓 over 𝐶. Then x∗ is a strict global minimum of 𝑓 over 𝐶.

8.4 Theorem (Optimal Solution)

Let 𝑓 ∶ 𝐶 → ℝ be a convex function defined on the convex set 𝐶 ⊆ ℝ𝑛. Then the set of optimal
solutions of the problem

min{𝑓(x) ∶ x ∈ 𝐶}

is convex. If, in addition, 𝑓 is strictly convex over 𝐶, then there exists at most one optimal
solution of the problem.

Proof

第一部分：最优解集是凸集

目标：证明最优解集 𝑆 = {x ∈ 𝐶 ∶ 𝑓(x) = 𝑓∗} 是凸集，其中 𝑓∗ = min{𝑓(x) ∶ x ∈ 𝐶}。
证明：
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1. 定义最优解集：
设 𝑆 = {x ∈ 𝐶 ∶ 𝑓(x) = 𝑓∗}，其中 𝑓∗ = min{𝑓(x) ∶ x ∈ 𝐶}。

2. 取任意两点：
取 x1,x2 ∈ 𝑆。

3. 考虑任意组合：
对于任意 𝜆 ∈ [0, 1]，设

x𝜆 = 𝜆x1 + (1 − 𝜆)x2.

由于 𝐶 是凸集，故 x𝜆 ∈ 𝐶。

4. 利用凸函数的定义：
由于 𝑓 是凸函数，

𝑓(x𝜆) ≤ 𝜆𝑓(x1) + (1 − 𝜆)𝑓(x2).

因为 x1,x2 ∈ 𝑆，有 𝑓(x1) = 𝑓(x2) = 𝑓∗，故

𝑓(x𝜆) ≤ 𝜆𝑓∗ + (1 − 𝜆)𝑓∗ = 𝑓∗.

5. 确定最优性：
因为 𝑓∗ 是最小值，有

𝑓(x𝜆) ≥ 𝑓∗.

结合上述式子，有

𝑓(x𝜆) = 𝑓∗.

因此，x𝜆 ∈ 𝑆。

6. 结论：
任意两个最优解的凸组合仍然属于最优解集 𝑆，因此 𝑆 是凸集。

第二部分：严格凸时最优解唯一

目标：如果 𝑓 在 𝐶 上严格凸，则优化问题

min{𝑓(x) ∶ x ∈ 𝐶}

至多有一个最优解。

证明：

1. 假设存在两个不同的最优解：
假设存在 x1,x2 ∈ 𝑆 且 x1 ≠ x2。

2. 考虑中点：
设 𝜆 = 1

2，则

x𝜆 = 1
2x1 +

1
2x2.

由于 𝐶 是凸集，故 x𝜆 ∈ 𝐶。
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3. 利用严格凸的定义：
因为 𝑓 是严格凸的，

𝑓(x𝜆) <
1
2𝑓(x1) +

1
2𝑓(x2).

由于 x1,x2 ∈ 𝑆，有 𝑓(x1) = 𝑓(x2) = 𝑓∗，故

𝑓(x𝜆) <
1
2𝑓

∗ + 1
2𝑓

∗ = 𝑓∗.

4. 矛盾：
但这与 𝑓∗ 是最小值相矛盾，因为 x𝜆 ∈ 𝐶 且

𝑓(x𝜆) < 𝑓∗,

这意味着 x𝜆 也是可行解且具有更小的函数值，与 𝑓∗ 为最小值的定义矛盾。

5. 结论：
因此，假设存在两个不同的最优解是不成立的，即在严格凸的情况下，最优解唯一。

8.5 Linear Programming

(LP):

min c⊤x

s.t. Ax ≤ b

Bx = g

When the feasible set 𝐶 is compact (i.e., closed and bounded) and nonempty, the Weierstrass
theorem guarantees that the convex optimization problem has at least one optimal solution.

8.6 Convex quadratic problems

min x⊤Qx + 2b⊤x

s.t. Ax ≤ c

Q ∈ ℝ𝑛×𝑛 is positive semidefinite, b ∈ ℝ𝑛, A ∈ ℝ𝑚×𝑛, c ∈ ℝ𝑚.

8.7 Conic Programming

Conic programming is a special type of convex optimization problem, whose standard form is
usually written as

min
𝑥∈ℝ𝑛

𝑐𝑇𝑥

s.t. 𝐴𝑥 = 𝑏,
𝑥 ∈ 𝒦,

where:

• 𝑥 ∈ ℝ𝑛 is the decision variable;
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• 𝑐 ∈ ℝ𝑛 is the coefficient vector of the objective function;

• 𝐴 ∈ ℝ𝑚×𝑛 and 𝑏 ∈ ℝ𝑚 define the linear equality constraints;

• 𝒦 is a convex cone, meaning that if 𝑥 ∈ 𝒦 and 𝛼 ≥ 0, then 𝛼𝑥 ∈ 𝒦, and for any 𝑥, 𝑦 ∈ 𝒦,
we have 𝑥 + 𝑦 ∈ 𝒦.

8.7.1 Uniformity and Generalization:

The form of conic programming problems covers many common convex optimization problems.
For example:

• When 𝒦 = ℝ𝑛
+, the problem reduces to a standard linear programming problem.

• When 𝒦 is a second-order cone, i.e.,

𝒬 = {(𝑡, 𝑥) ∈ ℝ × ℝ𝑛−1 ∣ ‖𝑥‖2 ≤ 𝑡},

the problem becomes a second-order cone programming (SOCP) problem.

• When 𝒦 is a semidefinite cone, i.e.,

𝒮𝑛
+ = {𝑋 ∈ ℝ𝑛×𝑛 ∣ 𝑋 = 𝑋𝑇 , 𝑋 ⪰ 0},

the problem becomes a semidefinite programming (SDP) problem.

8.8 Quadratically Constrained Quadratic Problems:

(QCQP) min x⊤A0x + 2b⊤
0 x + 𝑐0

s.t. x⊤A𝑖x + 2b⊤
𝑖 x + 𝑐𝑖 ≤ 0, 𝑖 = 1, 2,… ,𝑚,

x⊤A𝑗x + 2b⊤
𝑗 x + 𝑐𝑗 = 0, 𝑗 = 𝑚+ 1,𝑚 + 2,… ,𝑚 + 𝑝.

A0,… ,A𝑚+𝑝 − 𝑛 × 𝑛 symmetric, b0,… ,b𝑚+𝑝 ∈ ℝ𝑛, 𝑐0,… , 𝑐𝑚+𝑝 ∈ ℝ.

QCQPs are not necessarily convex problems. When there are no equality constraints (𝑝 = 0)
and all the matrices are positive semidefinite:

A𝑖 ⪰ 0, 𝑖 = 0, 1,… ,𝑚, the problem is convex, and is therefore called a convex QCQP.

8.9 Relaxation of QCQP

8.10 Robust LP

Robust Linear Programming (Robust LP) mainly deals with situations where parameters in
linear programming (LP) problems are uncertain. The general form is:

min
𝑥

𝑐𝑇𝑥
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s.t. 𝑎𝑇𝑖 𝑥 ≤ 𝑏𝑖, 𝑖 = 1,… ,𝑚

where 𝑎𝑖 are uncertain parameters.
To ensure that the decision variable 𝑥 satisfies the constraints under all possible scenarios, we

typically consider the worst-case scenario for each constraint:

max
𝑎𝑖∈ℰ𝑖

𝑎𝑇𝑖 𝑥 ≤ 𝑏𝑖,

which means we need to find the most difficult-to-satisfy coefficient 𝑎𝑖 in the given set ℰ𝑖.

8.10.1 Example 1 When the uncertainty set is an ellipsoid

When the uncertainty set is an ellipsoid, it is typically defined as:

ℰ𝑖 = {𝑎𝑖 ∣ 𝑎𝑖 = ̄𝑎𝑖 + 𝑃𝑖𝑢, ‖𝑢‖2 ≤ 1}

where:

• ̄𝑎𝑖 is the nominal value of the parameter;

• 𝑃𝑖 is the matrix defining the uncertainty ellipsoid;

• 𝑢 is an arbitrary unit vector within a unit ball, describing the range of parameter uncertainty.

Through computation, we obtain:

max
‖𝑢‖2≤1

( ̄𝑎𝑖 + 𝑃𝑖𝑢)𝑇𝑥 = ̄𝑎𝑇𝑖 𝑥 + ‖𝑃𝑇
𝑖 𝑥‖2.

Thus, the original problem can be reformulated as a second-order cone constraint:

̄𝑎𝑇𝑖 𝑥 + ‖𝑃𝑇
𝑖 𝑥‖2 ≤ 𝑏𝑖.

8.10.2 Example 2 Probability-based constraints

Consider the following probabilistic problem:

min
𝑥

𝑐𝑇𝑥

s.t. ℙ(𝑎𝑇𝑖 𝑥 ≤ 𝑏𝑖) ≥ 𝜂.

Assume that the random variable 𝑎𝑖 follows a normal distribution:

𝑎𝑖 ∼ 𝒩( ̄𝑎𝑖, Σ𝑖).

This means

ℙ(𝑏𝑖 − ̄𝑎𝑇𝑖 𝑥
√𝑥𝑇Σ𝑖𝑥

≥ 𝑧) = Φ(𝑧) ≥ 𝜂.
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Rearranging, we obtain the deterministic equivalent form of the probabilistic constraint:

𝑏𝑖 − ̄𝑎𝑇𝑖 𝑥
√𝑥𝑇Σ𝑖𝑥

≥ Φ−1(𝜂),

which leads to:

̄𝑎𝑇𝑖 𝑥 + Φ−1(𝜂)‖Σ
1
2
𝑖 𝑥‖2 ≤ 𝑏𝑖.

Again, we obtain a second-order cone constraint.

8.11 Chebyshev Center Problem

Given 𝑚 points a1,a2,… ,a𝑚 in ℝ𝑛. The objective is to find the center of the minimum radius
closed ball containing all the points.

min
𝑥,𝑟

𝑟

s.t. a𝑖 ∈ 𝐵[x, 𝑟], 𝑖 = 1, 2,… , 𝑛

8.12 Portfolio Selection Problem

We are given 𝑛 assets numbered as 1, 2,… , 𝑛. Let 𝑌𝑗 (𝑗 = 1, 2,… , 𝑛) be the random variable
representing the return from asset 𝑗.

Assume the expected returns are known:

𝜇𝑗 = 𝐸(𝑌𝑗), 𝑗 = 1, 2,… , 𝑛

and that the covariances of all the pairs of variables are also known:

𝜎𝑖,𝑗 = COV(𝑌𝑖, 𝑌𝑗), 𝑖, 𝑗 = 1, 2,… , 𝑛.

Let 𝑥𝑗 (𝑗 = 1, 2,… , 𝑛) be the proportion of the budget invested in asset 𝑗.
The decision variables are constrained to satisfy x ∈ Δ𝑛.
The overall return is the random variable:

𝑅 =
𝑛

∑
𝑗=1

𝑥𝑗𝑌𝑗,

whose expectation and variance are given by:

𝐸(𝑅) = 𝜇⊤x, 𝑉 (𝑅) = x⊤Cx,

where

𝜇 = (𝜇1, 𝜇2,… , 𝜇𝑛)⊤ and C is the covariance matrix: 𝐶𝑖,𝑗 = 𝜎𝑖,𝑗.
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8.12.1 The Markowitz Model

Minimizing the risk under a minimal return level:

min x⊤Cx

s.t. 𝜇⊤x ≥ 𝛼, e⊤x = 1, x ≥ 0

Maximize the expected return subject to a bounded risk constraint:

max 𝜇⊤x

s.t. x⊤Cx ≤ 𝛽, e⊤x = 1, x ≥ 0

A penalty approach:
min −𝜇⊤x + 𝛾 (x⊤Cx)
s.t. e⊤x = 1, x ≥ 0

8.13 The Orthogonal Projection Operator

Given a nonempty closed convex set 𝐶, the orthogonal projection operator 𝑃𝐶 ∶ ℝ𝑛 → 𝐶 is
defined by

𝑃𝐶(x) = arg min{‖y − x‖2 ∶ y ∈ 𝐶}.

8.14 Theorem (The First Projection Theorem)

Let 𝐶 ⊆ ℝ𝑛 be a nonempty closed and convex set.
Then for any x ∈ ℝ𝑛, the orthogonal projection 𝑃𝐶(x) exists and is unique.

8.15 Linear Classification

Suppose that we are given two types of points in ℝ𝑛: type A and type B points.

x1,x2,… ,x𝑚 ∈ ℝ𝑛 - type A.

x𝑚+1,x𝑚+2,… ,x𝑚+𝑝 ∈ ℝ𝑛 - type B.

The objective is to find a linear separator, which is a hyperplane of the form

𝐻(w, 𝛽) = {x ∈ ℝ𝑛 ∶ w⊤x + 𝛽 = 0}

for which the type A and type B points are in its opposite sides:

w⊤x𝑖 + 𝛽 < 0, 𝑖 = 1, 2,… ,𝑚

w⊤x𝑖 + 𝛽 > 0, 𝑖 = 𝑚+ 1,𝑚 + 2,… ,𝑚 + 𝑝

Underlying Assumption: The two sets of points are linearly separable, meaning that the
set of inequalities has a solution.
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可以通过原点来判断 Half-Space 方向，或者看 Half-Space 方向是和法向量 a 相反一侧的。

8.15.1 Lemma (Margin)

Let 𝐻(a, 𝑏) = {x ∈ ℝ𝑛 ∶ a⊤x = 𝑏}, where 0 ≠ a ∈ ℝ𝑛 and 𝑏 ∈ ℝ. Let y ∈ ℝ𝑛. Then the
distance between y and the set 𝐻 is given by

𝑑(y,𝐻(a, 𝑏)) = ∣a⊤y − 𝑏∣
‖a‖ .

8.15.2 Mathematical Formulation

max{ min
𝑖=1,2,…,𝑚+𝑝

∣w⊤x𝑖 + 𝛽∣
‖w‖ }

s.t. w⊤x𝑖 + 𝛽 < 0, 𝑖 = 1, 2,… ,𝑚

w⊤x𝑖 + 𝛽 > 0, 𝑖 = 𝑚+ 1,𝑚 + 2,… ,𝑚 + 𝑝

The problem has a degree of freedom in the sense that if (w, 𝛽) is an optimal solution, then so
is any nonzero multiplier of it, that is, (𝛼w, 𝛼𝛽) for 𝛼 ≠ 0. We can therefore decide that

min
𝑖=1,2,…,𝑚+𝑝

∣w⊤x𝑖 + 𝛽∣ = 1

Problem Reformulation:
Thus, the problem can be written as:

max 1
‖w‖ s.t. min

𝑖=1,2,…,𝑚+𝑝
∣w⊤x𝑖 + 𝛽∣ = 1

w⊤x𝑖 + 𝛽 < 0, 𝑖 = 1, 2,… ,𝑚

w⊤x𝑖 + 𝛽 > 0, 𝑖 = 𝑚+ 1,𝑚 + 2,… ,𝑚 + 𝑝

Equivalent Quadratic Problem:
This can also be written as:

min 1
2‖w‖2 s.t. min

𝑖=1,2,…,𝑚+𝑝
∣w⊤x𝑖 + 𝛽∣ = 1

w⊤x𝑖 + 𝛽 ≤ −1, 𝑖 = 1, 2,… ,𝑚

w⊤x𝑖 + 𝛽 ≥ 1, 𝑖 = 𝑚+ 1,𝑚 + 2,… ,𝑚 + 𝑝

Dropping Redundant Constraints:
Since the first constraint can be dropped, the equivalent form becomes:

min 1
2‖w‖2 s.t. w⊤x𝑖 + 𝛽 ≤ −1, 𝑖 = 1, 2,… ,𝑚

w⊤x𝑖 + 𝛽 ≥ 1, 𝑖 = 𝑚+ 1,𝑚 + 2,… ,𝑚 + 𝑝
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8.16 Trust Region Subproblem (TRS) Reformulation as a Convex Optimiza-
tion Problem

8.16.1 Problem Definition: Trust Region Subproblem (TRS)

Problem (TRS):
min x⊤Ax + 2b⊤x + 𝑐
subject to ‖x‖2 ≤ 1

where:

• A ∈ ℝ𝑛×𝑛 is a symmetric matrix.

• b ∈ ℝ𝑛 is a vector.

• 𝑐 ∈ ℝ is a constant.

Nonconvexity: This problem is generally nonconvex unless A is positive semidefinite.

8.16.2 Application of the Spectral Decomposition Theorem

Spectral Decomposition: Any symmetric matrix A can be decomposed as:

A = UDU⊤,

where:

• U ∈ ℝ𝑛×𝑛 is an orthogonal matrix.

• D = diag(𝑑1, 𝑑2,… , 𝑑𝑛) is a diagonal matrix containing the eigenvalues of A.

Applying this decomposition to the TRS, the problem becomes:

min {x⊤UDU⊤x + 2b⊤UU⊤x + 𝑐 ∶ ‖U⊤x‖2 ≤ 1} .

8.16.3 Linear Change of Variables

Linear Transformation: Let y = U⊤x. Then:

‖y‖2 = ‖U⊤x‖2 = ‖x‖2 ≤ 1.

The problem in terms of y becomes:

min {y⊤Dy + 2b⊤Uy + 𝑐 ∶ ‖y‖2 ≤ 1} .

Simplification: Let f = U⊤b. The problem simplifies to:

min
𝑛

∑
𝑖=1

𝑑𝑖𝑦2𝑖 + 2
𝑛

∑
𝑖=1

𝑓𝑖𝑦𝑖 + 𝑐, s.t.
𝑛

∑
𝑖=1

𝑦2𝑖 ≤ 1.
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8.16.4 Normalization and Reformulation

Lemma: If y∗ is an optimal solution, then 𝑓𝑖𝑦∗𝑖 ≤ 0 for all 𝑖 = 1, 2,… , 𝑛.
Variable Transformation:

𝑦𝑖 = − sgn(𝑓𝑖)
√𝑧𝑖, 𝑧𝑖 ≥ 0.

The optimization problem becomes:

min
𝑛

∑
𝑖=1

𝑑𝑖𝑧𝑖 − 2
𝑛

∑
𝑖=1

|𝑓𝑖|
√𝑧𝑖 + 𝑐

s.t.
𝑛

∑
𝑖=1

𝑧𝑖 ≤ 1, 𝑧𝑖 ≥ 0.

8.16.5 Convexity Analysis of the Reformulated Problem

Objective Function:

• The term ∑𝑛
𝑖=1 𝑑𝑖𝑧𝑖 is linear, hence convex.

• The term −2∑𝑛
𝑖=1 |𝑓𝑖|

√𝑧𝑖 is convex because √𝑧𝑖 is concave, and the negative of a concave
function is convex.

Constraints:

• The constraint ∑𝑛
𝑖=1 𝑧𝑖 ≤ 1 is linear, hence defines a convex set.

• The nonnegativity constraints 𝑧𝑖 ≥ 0 are also linear and convex.
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9 Optimization over a Convex Set

(𝑃 ) min 𝑓(x)
s.t. x ∈ 𝐶

• 𝐶: closed convex subset of ℝ𝑛.

• 𝑓 : continuously differentiable over 𝐶. Not necessarily convex.

9.1 Theorem (Stationarity or Optimal Condition)

Let 𝑓 be a continuously differentiable function over a closed and convex set 𝐶. Then x∗ is
called a stationary point or optimal point of (P) if

∇𝑓(x∗)⊤(x − x∗) ≥ 0 for all x ∈ 𝐶

Note that it’s different from unconstrained optimization since constraints should be met. The
inequality ensures that the directional derivative is non-negative in all possible direc-
tions.

9.2 Lemma

Let 𝑓 be a continuously differentiable function over a nonempty closed convex set 𝐶, and let
x∗ be a local minimum of (P). Then x∗ is a stationary point of (P).

9.3 Explicit Stationarity Condition

feasible set explicit stationarity condition
ℝ𝑛 ∇𝑓(x∗) = 0

ℝ𝑛
+

𝜕𝑓
𝜕𝑥𝑖

(x∗){= 0 if 𝑥∗
𝑖 > 0

≥ 0 if 𝑥∗
𝑖 = 0

{x ∈ ℝ𝑛 ∶ e⊤x = 1} 𝜕𝑓
𝜕𝑥1

(x∗) = ⋯ = 𝜕𝑓
𝜕𝑥𝑛

(x∗)
𝐵[0, 1] ∇𝑓(x∗) = 0 or ‖x∗‖ = 1

and ∃𝜆 ≤ 0 ∶ ∇𝑓(x∗) = 𝜆x∗

9.4 Theorem (The Second Projection Theorem)

Let 𝐶 be a nonempty closed convex set and let x ∈ ℝ𝑛. Then z = 𝑃𝐶(x) if and only if

(x − z)⊤(y − z) ≤ 0 for any y ∈ 𝐶. (1)

9.5 Theorem (Nonexpansivness)

Let 𝐶 be a nonempty closed and convex set.
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1. For any v,w ∈ ℝ𝑛:

(𝑃𝐶(v) − 𝑃𝐶(w))⊤ (v − w) ≥ ‖𝑃𝐶(v) − 𝑃𝐶(w)‖2 . (2)

Projections at different points do not deviate too much from the relative positions of their
original points

2. (non-expansiveness) For any v,w ∈ ℝ𝑛:

‖𝑃𝐶(v) − 𝑃𝐶(w)‖ ≤ ‖v − w‖. (3)

The projection operation does not ”magnify” the distance between two points

9.6 Theorem (Representation of Stationarity)

Let 𝑓 be a continuously differentiable function over the nonempty closed convex set 𝐶, and let
𝑠 > 0. Then x∗ is a stationary point of

(𝑃 ) min 𝑓(x)
s.t. x ∈ 𝐶

if and only if
x∗ = 𝑃𝐶 (x∗ − 𝑠∇𝑓(x∗)) .

9.7 Proof

Direction 1: If x∗ is a stationary point, then x∗ = 𝑃𝐶 (x∗ − 𝑠∇𝑓(x∗)).

A point x∗ is a stationary point if:

∇𝑓(x∗)⊤(x − x∗) ≥ 0, ∀x ∈ 𝐶. (1)

We want to show that:
x∗ = 𝑃𝐶 (x∗ − 𝑠∇𝑓(x∗)) .

The Projection Theorem states that for any point v ∈ ℝ𝑛, the projection z = 𝑃𝐶(v) onto a
closed convex set 𝐶 satisfies:

(v − z)⊤(y − z) ≤ 0, ∀y ∈ 𝐶. (2)

Assuming x∗ is a stationary point, let:

v = x∗ − 𝑠∇𝑓(x∗), z = x∗.

We need to verify that x∗ satisfies the projection condition. Substituting into (2), we get:

(x∗ − 𝑠∇𝑓(x∗) − x∗)⊤ (y − x∗) ≤ 0, ∀y ∈ 𝐶.
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The left-hand side simplifies to:
(−𝑠∇𝑓(x∗))⊤ (y − x∗).

Thus, the inequality becomes:
(−𝑠∇𝑓(x∗))⊤ (y − x∗) ≤ 0.

Dividing both sides by −𝑠 (note that 𝑠 > 0), we obtain:

∇𝑓(x∗)⊤(y − x∗) ≥ 0, ∀y ∈ 𝐶.

This is exactly the definition of a stationary point in (1). Therefore, x∗ satisfies the projection
condition, and we conclude that:

x∗ = 𝑃𝐶 (x∗ − 𝑠∇𝑓(x∗)) .

Direction 2: If x∗ = 𝑃𝐶 (x∗ − 𝑠∇𝑓(x∗)), then x∗ is a stationary point.

Assume:
x∗ = 𝑃𝐶 (x∗ − 𝑠∇𝑓(x∗)) .

Since x∗ is the projection of x∗ − 𝑠∇𝑓(x∗) onto 𝐶, the projection theorem implies:

(x∗ − 𝑠∇𝑓(x∗) − x∗)⊤ (y − x∗) ≤ 0, ∀y ∈ 𝐶.

The left-hand side simplifies to:
(−𝑠∇𝑓(x∗))⊤ (y − x∗).

Thus, the inequality becomes:
(−𝑠∇𝑓(x∗))⊤ (y − x∗) ≤ 0.

Dividing both sides by −𝑠 (since 𝑠 > 0), we get:

∇𝑓(x∗)⊤(y − x∗) ≥ 0, ∀y ∈ 𝐶.

This is exactly the definition of a stationary point in (1). Therefore, x∗ is a stationary point.

9.8 The Gradient Mapping

The gradient mapping is defined as

𝐺𝐿(x) = 𝐿[x − 𝑃𝐶 (x − 1
𝐿∇𝑓(x))]

where 𝐿 > 0.
In the unconstrained case 𝐺𝐿(x) = ∇𝑓(x).
𝐺𝐿(x) = 0 if and only if x is a stationary point of (P). This means that we can consider ‖𝐺𝐿(x)‖2

to be an optimality measure.
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9.9 Lemma (Sufficient decrease lemma for constrained problems)

Suppose that 𝑓 ∈ 𝐶1,1
𝐿 (𝐶) for some 𝐿 > 0, where 𝐶 is a closed convex set. Then for any x ∈ 𝐶

and 𝑡 ∈ (0, 2
𝐿) the following inequality holds:

𝑓(x) − 𝑓 (𝑃𝐶 (x − 𝑡∇𝑓(x))) ≥ 𝑡(1 − 𝐿𝑡
2 ) ∥1𝑡 (x − 𝑃𝐶 (x − 𝑡∇𝑓(x)))∥

2
.

9.9.1 Recall (Sufficient Decrease Lemma for unconstrained problems)

Suppose that 𝑓 ∈ 𝐶1,1
𝐿 (𝐷) for some 𝐿 > 0. Then for any x ∈ ℝ𝑛 and 𝑡 > 0

𝑓(x) − 𝑓(x − 𝑡∇𝑓(x)) ≥ 𝑡(1 − 𝐿𝑡
2 ) ‖∇𝑓(x)‖2.

9.10 Convergence of the Gradient Projection Method

Let {x𝑘} be the sequence generated by the gradient projection method for solving problem (P)
with either a constant stepsize ̄𝑡 ∈ (0, 2

𝐿), where 𝐿 is a Lipschitz constant of ∇𝑓 or a backtracking
stepsize strategy. Assume that 𝑓 is bounded below. Then

1. The sequence {𝑓(x𝑘)} is nonincreasing.

2. 𝐺𝑑(x𝑘) → 0 as 𝑘 → ∞, where

𝑑 =
⎧{
⎨{⎩

1
̄𝑡 constant stepsize,

1
𝑠 backtracking.

9.11 Theorem (Rate of convergence of the sequence of function values)

Consider the problem
(𝑃 ) min 𝑓(x) s.t. x ∈ 𝐶,

where 𝐶 is a nonempty closed and convex set, and 𝑓 ∈ 𝐶1,1
𝐿 (𝐶) is convex over 𝐶. Let {x𝑘}𝑘≥0

be generated by GPM for solving (P) with a constant stepsize 𝑡𝑘 = ̄𝑡 ∈ (0, 1
𝐿 ]. Assume the set of

optimal solutions 𝑋∗ is nonempty, and let 𝑓∗ be the optimal value of (P). Then,

1. For any 𝑘 ≥ 0 and x∗ ∈ 𝑋∗,

2 ̄𝑡 (𝑓(x𝑘+1) − 𝑓(x∗)) ≤ ‖x𝑘 − x∗‖2 − ‖x𝑘+1 − x∗‖2,

2. For any 𝑛 ≥ 1:

𝑓(x𝑛) − 𝑓∗ ≤ ‖x0 − x∗‖2
2 ̄𝑡𝑛 .

9.12 Theorem (Convergence of the sequence generated by the gradient pro-
jection method)

Under the same setting of the previous theorem, the sequence {x𝑘}𝑘≥0 generated by the gradient
projection method with a constant stepsize 𝑡𝑘 = ̄𝑡 ∈ (0, 1

𝐿 ] converges to an optimal solution.
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9.13 Sparsity Constrained Problems

The sparsity constrained problem is given by

(𝑆) min 𝑓(x) s.t. ‖x‖0 ≤ 𝑠,

• 𝑓 ∶ ℝ𝑛 → ℝ is a lower-bounded continuously differentiable function.

• 𝑠 > 0 is an integer smaller than 𝑛.

• ‖x‖0 is the ℓ0 norm of x, which counts the number of nonzero components in x.

• We do not assume that 𝑓 is a convex function. The constraint set is of course not convex.

9.13.1 Notation

• ℐ1(x) ≡ {𝑖 ∶ 𝑥𝑖 ≠ 0} - the support set.

• ℐ0(x) ≡ {𝑖 ∶ 𝑥𝑖 = 0} - the off-support set.

• 𝐶𝑠 = {x ∶ ‖x‖0 ≤ 𝑠}.

• For a vector x ∈ ℝ𝑛 and 𝑖 ∈ {1, 2,… , 𝑛}, the 𝑖-th largest absolute value component in x is
denoted by 𝑀𝑖(x).

9.14 Definition (Basic Feasibility)

A vector x∗ ∈ 𝐶𝑠 is called a basic feasible (BF) vector of (P) if:

1. when ‖x∗‖0 < 𝑠, ∇𝑓(x∗) = 0;
x∗ is a unconstrained critical point

2. when ‖x∗‖0 = 𝑠, 𝜕𝑓
𝜕𝑥𝑖

(x∗) = 0 for all 𝑖 ∈ ℐ1(x∗).
Only the gradients in the non-zero directions are required to be 0, ensuring that there is no
room for further optimization in those directions

9.15 Theorem (BF is a necessary optimality condition)

Let x∗ be an optimal solution of (P). Then x∗ is a BF vector.

9.16 Definition (L-stationarity)

A vector x∗ ∈ 𝐶𝑠 is called an L-stationary point of (S) if it satisfies the relation

[NC𝐿] x∗ ∈ 𝑃𝐶𝑠
(x∗ − 1

𝐿∇𝑓(x∗)) .
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9.17 Lemma (Explicit Reformulation of L-stationarity)

For any 𝐿 > 0, x∗ satisfies [NC𝐿] if and only if ‖x∗‖0 ≤ 𝑠 and

∣ 𝜕𝑓𝜕𝑥𝑖
(x∗)∣

⎧{
⎨{⎩

≤ 𝐿𝑀𝑠(x∗) if 𝑖 ∈ ℐ0(x∗),

= 0 if 𝑖 ∈ ℐ1(x∗),
(6)

9.18 Theorem

Suppose that 𝑓 ∈ 𝐶1,1
𝐿𝑓

⊆ ℝ𝑛, and that 𝐿 > 𝐿𝑓 . Let x∗ be an optimal solution of (S). Then x∗

is an 𝐿-stationary point.

9.19 The Iterative Hard-Thresholding (IHT) Method

Algorithm 2 The IHT method
0: Input: a constant 𝐿 ≥ 𝐿𝑓 .
0: Initialization: Choose x0 ∈ 𝐶𝑠.
0: General step: x𝑘+1 ∈ 𝑃𝐶𝑠

(x𝑘 − 1
𝐿∇𝑓(x𝑘)) , (𝑘 = 0, 1, 2,… ) =0

9.19.1 Theorem (convergence of IHT)

Suppose that 𝑓 ∈ 𝐶1,1
𝐿𝑓

and let {x𝑘}𝑘≥0 be the sequence generated by the IHT method with
stepsize 1

𝐿 where 𝐿 > 𝐿𝑓 . Then any accumulation point of {x𝑘}𝑘≥0 is an 𝐿-stationary point.
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10 Optimality Conditions for Linearly Constrained Problems

10.1 Theorem (Separation of a point from a closed and convex set)

Let 𝐶 ⊂ ℝ𝑛 be a nonempty closed and convex set, and let y ∉ 𝐶. Then there exists p ∈ ℝ𝑛∖{0}
and 𝛼 ∈ ℝ such that

p⊤y > 𝛼 and p⊤x ≤ 𝛼 for all x ∈ 𝐶.

10.1.1 Proof

By the second orthogonal projection theorem, the vector x̄ = 𝑃𝐶(y) ∈ 𝐶 satisfies

(y − x̄)⊤(x − x̄) ≤ 0 for all x ∈ 𝐶

which is the same as
(y − x̄)⊤x ≤ (y − x̄)⊤x̄ for all x ∈ 𝐶.

Denote p = y − x̄ ≠ 0 and 𝛼 = (y − x̄)⊤x̄. Then

p⊤x ≤ 𝛼 for all x ∈ 𝐶.

On the other hand,

p⊤y = (y − x̄)⊤y = (y − x̄)⊤(y − x̄) + (y − x̄)⊤x̄ = ‖y − x̄‖2 + 𝛼 > 𝛼.

10.2 Lemma (Farkas Lemma)

Let c ∈ ℝ𝑛 and A ∈ ℝ𝑚×𝑛. Then exactly one of the following systems has a solution:

(i) Ax ≤ 0, c⊤x > 0

(ii) A⊤y = c, y ≥ 0

Or

Let c ∈ ℝ𝑛 and A ∈ ℝ𝑚×𝑛. Then the following claims are equivalent:

(i) The implication Ax ≤ 0 ⇒ c⊤x ≤ 0 holds true.

(ii) There exists y ∈ ℝ𝑚
+ such that A⊤y = c.

10.3 Theorem (Gordans Alternative Theorem)

Let A ∈ ℝ𝑚×𝑛. Then exactly one of the following systems has a solution:

(i) Ax < 0

(ii) p ≠ 0, A⊤p = 0, p ≥ 0
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10.4 Theorem (KKT conditions for linearly constrained problems - necessary
optimality conditions)

Consider the minimization problem

(𝑃 ) min 𝑓(x)
s.t. a⊤

𝑖 x ≤ 𝑏𝑖, 𝑖 = 1, 2,… ,𝑚

where 𝑓 is continuously differentiable over ℝ𝑛, a1,a2,… ,a𝑚 ∈ ℝ𝑛, 𝑏1, 𝑏2,… , 𝑏𝑚 ∈ ℝ and let x∗

be a local minimum point of (𝑃 ). Then there exist 𝜆1, 𝜆2,… , 𝜆𝑚 ≥ 0 such that

∇𝑓(x∗) +
𝑚
∑
𝑖=1

𝜆𝑖a𝑖 = 0 (2)

and
𝜆𝑖(a⊤

𝑖 x∗ − 𝑏𝑖) = 0, 𝑖 = 1, 2,… ,𝑚 (3)

10.4.1 Proof

Step 1: Establish Directional Derivative Inequalities
Since x∗ is a local minimum, for any feasible direction that satisfies the constraints, we have:

∇𝑓(x∗)⊤(x − x∗) ≥ 0 for all x satisfying a⊤
𝑖 x ≤ 𝑏𝑖.

This shows that in the feasible region, the directional derivative of the objective function at x∗

is non-negative.
Step 2: Define the Set of Active Constraints
Define the set of active constraints at x∗ as:

𝐼(x∗) = {𝑖 ∣ a⊤
𝑖 x∗ = 𝑏𝑖}.

These are the constraints that are equalities at x∗.
Step 3: Variable Transformation
Make the change of variables:

y = x − x∗.

Thus, y represents a direction starting from x∗.
Step 4: Rewrite the Inequalities
Since x = x∗ + y, substitute into the constraints:

• For 𝑖 ∈ 𝐼(x∗):
a⊤
𝑖 (x∗ + y) ≤ 𝑏𝑖 ⇒ a⊤

𝑖 x∗ + a⊤
𝑖 y ≤ 𝑏𝑖 ⇒ 𝑏𝑖 + a⊤

𝑖 y ≤ 𝑏𝑖 ⇒ a⊤
𝑖 y ≤ 0.

• For 𝑖 ∉ 𝐼(x∗):
a⊤
𝑖 (x∗ + y) ≤ 𝑏𝑖 ⇒ a⊤

𝑖 x∗ + a⊤
𝑖 y ≤ 𝑏𝑖 ⇒ a⊤

𝑖 y ≤ 𝑏𝑖 − a⊤
𝑖 x∗.

Since a⊤
𝑖 x∗ < 𝑏𝑖 for 𝑖 ∉ 𝐼(x∗), it follows that 𝑏𝑖 − a⊤

𝑖 x∗ > 0.
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Step 5: Simplify the Conditions
Thus, the inequalities can be simplified as:

For all y satisfying a⊤
𝑖 y ≤ 0 (𝑖 ∈ 𝐼(x∗)), ∇𝑓(x∗)⊤y ≥ 0.

Step 6: Remove the Influence of Inactive Constraints
For simplicity, we will consider only those directions y that satisfy a⊤

𝑖 y ≤ 0 for 𝑖 ∈ 𝐼(x∗) and
ignore those with 𝑖 ∉ 𝐼(x∗).

Proof of Validity:
For 𝑖 ∉ 𝐼(x∗), 𝑏𝑖 − a⊤

𝑖 x∗ > 0. Therefore, we can find a small enough 𝛼 > 0 such that
a⊤
𝑖 (𝛼y) ≤ 𝑏𝑖 − a⊤

𝑖 x∗.
Thus, as long as 𝛼 is sufficiently small, 𝛼y will not violate the constraint.
Therefore, we can focus on directions y that satisfy a⊤

𝑖 y ≤ 0 for 𝑖 ∈ 𝐼(x∗).
Step 7: Establish an Inequality for y
Now, we have:

If a⊤
𝑖 y ≤ 0 for all 𝑖 ∈ 𝐼(x∗), then ∇𝑓(x∗)⊤y ≥ 0.

This means that for directions y satisfying a⊤
𝑖 y ≤ 0 (for 𝑖 ∈ 𝐼(x∗)), the gradient ∇𝑓(x∗)⊤y is

non-negative.
Step 8: Apply Farkas’ Lemma
Farkas’ Lemma: For given c ∈ ℝ𝑛 and matrix A ∈ ℝ𝑚×𝑛, exactly one of the following two

systems has a solution:

1. There exists y ∈ ℝ𝑛 such that Ay ≤ 0 and c⊤y < 0.

2. There exists 𝜆 ≥ 0 such that A⊤𝜆 = c.

In our case, let:

• A be a matrix with rows a⊤
𝑖 (for 𝑖 ∈ 𝐼(x∗)).

• c = −∇𝑓(x∗).

From the above, we have:

• For all y satisfying a⊤
𝑖 y ≤ 0, ∇𝑓(x∗)⊤y ≥ 0.

Applying Farkas’ Lemma:
Since there does not exist a y such that Ay ≤ 0 and ∇𝑓(x∗)⊤y < 0, by Farkas’ Lemma, there

must exist 𝜆 ≥ 0 (for 𝑖 ∈ 𝐼(x∗)) such that:

A⊤𝜆 = −∇𝑓(x∗).

This implies:
−∇𝑓(x∗) = ∑

𝑖∈𝐼(x∗)
𝜆𝑖a𝑖.

Step 9: Define the Lagrange Multipliers
Extend 𝜆 for all 𝑖 = 1, 2,… ,𝑚 as follows:
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• For 𝑖 ∈ 𝐼(x∗), 𝜆𝑖 ≥ 0 as derived.

• For 𝑖 ∉ 𝐼(x∗), set 𝜆𝑖 = 0.

Then, in total, we have:

−∇𝑓(x∗) =
𝑚
∑
𝑖=1

𝜆𝑖a𝑖,

or equivalently:

∇𝑓(x∗) +
𝑚
∑
𝑖=1

𝜆𝑖a𝑖 = 0.

Step 10: Verify Complementary Slackness
For 𝑖 ∉ 𝐼(x∗):

𝜆𝑖 = 0 and a⊤
𝑖 x∗ < 𝑏𝑖.

Thus:
𝜆𝑖(a⊤

𝑖 x∗ − 𝑏𝑖) = 0.

For 𝑖 ∈ 𝐼(x∗):
a⊤
𝑖 x∗ = 𝑏𝑖.

Therefore:
𝜆𝑖(a⊤

𝑖 x∗ − 𝑏𝑖) = 𝜆𝑖 × 0 = 0.

Step 11: Conclusion
In summary, we have proven the existence of 𝜆𝑖 ≥ 0 (for 𝑖 = 1, 2,… ,𝑚) such that:

• Stationarity condition:

∇𝑓(x∗) +
𝑚
∑
𝑖=1

𝜆𝑖a𝑖 = 0

• Complementary slackness condition:

𝜆𝑖(a⊤
𝑖 x∗ − 𝑏𝑖) = 0, 𝑖 = 1, 2,… ,𝑚

This is the specific form of the KKT conditions in this problem.

10.5 Theorem (KKT conditions for convex linearly constrained problems -
necessary and sufficient optimality conditions)

Consider the minimization problem

(𝑃 ) min 𝑓(x)
s.t. a⊤

𝑖 x ≤ 𝑏𝑖, 𝑖 = 1, 2,… ,𝑚

where 𝑓 is a convex continuously differentiable function over ℝ𝑛, a1,a2,… ,a𝑚 ∈ ℝ𝑛, 𝑏1, 𝑏2,… , 𝑏𝑚 ∈
ℝ and let x∗ be a feasible solution of (𝑃 ). Then x∗ is an optimal solution if and only if there exist
𝜆1, 𝜆2,… , 𝜆𝑚 ≥ 0 such that

∇𝑓(x∗) +
𝑚
∑
𝑖=1

𝜆𝑖a𝑖 = 0 (4)
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and
𝜆𝑖(a⊤

𝑖 x∗ − 𝑏𝑖) = 0, 𝑖 = 1, 2,… ,𝑚 (5)

10.5.1 Proof

Necessity was proven.
Step 1: Define the Auxiliary Function ℎ(x)
We define a new function ℎ ∶ ℝ𝑛 → ℝ as:

ℎ(x) = 𝑓(x) +
𝑚
∑
𝑖=1

𝜆𝑖(a⊤
𝑖 x − 𝑏𝑖)

Explanation:

• This is similar to the structure of a Lagrangian function, but here, we add the constraint
terms directly to the objective function rather than forming a Lagrangian (typically written
as 𝐿(x, 𝜆) = 𝑓(x) −∑𝑚

𝑖=1 𝜆𝑖(a⊤
𝑖 x − 𝑏𝑖)).

• Since 𝜆𝑖 ≥ 0, we can directly add the constraint terms to the objective function 𝑓 for subse-
quent analysis.

Step 2: Compute the Gradient of ℎ at x∗

We calculate the gradient of ℎ at x∗:

∇ℎ(x∗) = ∇𝑓(x∗) +
𝑚
∑
𝑖=1

𝜆𝑖a𝑖

Using the stationarity condition (4):

∇𝑓(x∗) +
𝑚
∑
𝑖=1

𝜆𝑖a𝑖 = 0,

we have:
∇ℎ(x∗) = 0

Conclusion:

• x∗ is a stationary point of ℎ (gradient is zero).

• Since 𝑓 is convex and the constraints are linear (linear functions are also convex), ℎ is a convex
function.

Step 3: x∗ is a Global Minimum of ℎ
Reasoning:

• For convex functions, any stationary point is a global minimum.

• Since ℎ is convex and ∇ℎ(x∗) = 0, we have:

ℎ(x∗) ≤ ℎ(x), ∀x ∈ ℝ𝑛
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Step 4: Compare ℎ(x∗) and ℎ(x)
For any x ∈ ℝ𝑛, we have:

ℎ(x) = 𝑓(x) +
𝑚
∑
𝑖=1

𝜆𝑖(a⊤
𝑖 x − 𝑏𝑖)

ℎ(x∗) = 𝑓(x∗) +
𝑚
∑
𝑖=1

𝜆𝑖(a⊤
𝑖 x∗ − 𝑏𝑖)

Step 5: Using the Complementary Slackness Condition
From the complementary slackness condition (5):

𝜆𝑖(a⊤
𝑖 x∗ − 𝑏𝑖) = 0

Therefore, each constraint term in ℎ(x∗) vanishes, so:

ℎ(x∗) = 𝑓(x∗) +
𝑚
∑
𝑖=1

𝜆𝑖(a⊤
𝑖 x∗ − 𝑏𝑖) = 𝑓(x∗) + 0 = 𝑓(x∗)

Step 6: Since x is Feasible
Because x satisfies the constraint conditions, we have a⊤

𝑖 x−𝑏𝑖 ≤ 0, and since 𝜆𝑖 ≥ 0, it follows
that:

𝜆𝑖(a⊤
𝑖 x − 𝑏𝑖) ≤ 0

Thus, for any feasible x:

𝑓(x) +
𝑚
∑
𝑖=1

𝜆𝑖(a⊤
𝑖 x − 𝑏𝑖) ≤ 𝑓(x)

Step 7: Combine the Above Results
From Steps 4 through 6, we have:

ℎ(x∗) = 𝑓(x∗) ≤ ℎ(x) = 𝑓(x) +
𝑚
∑
𝑖=1

𝜆𝑖(a⊤
𝑖 x − 𝑏𝑖) ≤ 𝑓(x)

Therefore:
𝑓(x∗) ≤ 𝑓(x), ∀x satisfying a⊤

𝑖 x ≤ 𝑏𝑖

10.6 Theorem (KKT conditions for linearly constrained problems)

Consider the minimization problem

(𝑄) min 𝑓(x)
s.t. a⊤

𝑖 x ≤ 𝑏𝑖, 𝑖 = 1, 2,… ,𝑚
c⊤
𝑗 x = 𝑑𝑗, 𝑗 = 1, 2,… , 𝑝

where 𝑓 is continuously differentiable, a𝑖, c𝑗 ∈ ℝ𝑛, 𝑏𝑖, 𝑑𝑗 ∈ ℝ.

(i) (Necessity of the KKT conditions) If x∗ is a local minimum of (𝑄), then there exist 𝜆1, 𝜆2,… , 𝜆𝑚 ≥
0 and 𝜇1, 𝜇2,… , 𝜇𝑝 ∈ ℝ such that
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∇𝑓(x∗) +
𝑚
∑
𝑖=1

𝜆𝑖a𝑖 +
𝑝

∑
𝑗=1

𝜇𝑗c𝑗 = 0 (6)

and
𝜆𝑖(a⊤

𝑖 x∗ − 𝑏𝑖) = 0, 𝑖 = 1, 2,… ,𝑚 (7)

(ii) (Sufficiency in the convex case) If 𝑓 is convex over ℝ𝑛 and x∗ is a feasible solution of (𝑄) for
which there exist 𝜆1,… , 𝜆𝑚 ≥ 0 and 𝜇1,… , 𝜇𝑝 ∈ ℝ such that (6) and (7) are satisfied, then x∗

is an optimal solution of (𝑄).

10.7 Lemma

Let 𝐶 be the affine space
𝐶 = {x ∈ ℝ𝑛 ∶ Ax = b}

where A ∈ ℝ𝑚×𝑛 and b ∈ ℝ𝑚. Assume the rows of A are linearly independent. Then

𝑃𝐶(y) = y − A⊤(AA⊤)−1(Ay − b)

Consider the hyperplane

𝐻 = {x ∈ ℝ𝑛 ∶ a⊤x = 𝑏} (0 ≠ a ∈ ℝ𝑛, 𝑏 ∈ ℝ)

Then by the previous slide:

𝑃𝐻(y) = y − a(a⊤a)−1(a⊤y − 𝑏) = y − a⊤y − 𝑏
‖a‖2 a

10.8 Lemma (Distance of a point from a hyperplane)

Let 𝐻 = {x ∈ ℝ𝑛 ∶ a⊤x = 𝑏}, where 0 ≠ a ∈ ℝ𝑛 and 𝑏 ∈ ℝ. Then

𝑑(y,𝐻) = |a⊤y − 𝑏|
‖a‖

10.9 Orthogonal Regression

Let a1,… ,a𝑚 ∈ ℝ𝑛.
For a given 0 ≠ x ∈ ℝ𝑛 and 𝑦 ∈ ℝ, we define the hyperplane:

𝐻x,𝑦 ∶= {a ∈ ℝ𝑛 ∶ x⊤a = 𝑦}

In the orthogonal regression problem, we seek to find a nonzero vector x ∈ ℝ𝑛 and 𝑦 ∈ ℝ such
that the sum of squared Euclidean distances between the points a1,… ,a𝑚 to 𝐻x,𝑦 is minimal:

min
x,𝑦

{
𝑚
∑
𝑖=1

𝑑(a𝑖,𝐻x,𝑦)2 ∶ 0 ≠ x ∈ ℝ𝑛, 𝑦 ∈ ℝ}
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where
𝑑(a𝑖,𝐻x,𝑦)2 = (a⊤

𝑖 x − 𝑦)2
‖x‖2 , 𝑖 = 1,… ,𝑚.

The Orthogonal Regression problem is the same as

min
x,𝑦

{
𝑚
∑
𝑖=1

(a⊤
𝑖 x − 𝑦)2
‖x‖2 ∶ 0 ≠ x ∈ ℝ𝑛, 𝑦 ∈ ℝ}

Fixing x and minimizing first with respect to 𝑦, we obtain that the optimal 𝑦 is given by
𝑦 = 1

𝑚 ∑𝑚
𝑖=1 a⊤

𝑖 x = 1
𝑚e⊤Ax, where A = [a1,a2,… ,a𝑚]⊤.

Using the above expression for 𝑦, we obtain that

𝑚
∑
𝑖=1

(a⊤
𝑖 x − 𝑦)2 =

𝑚
∑
𝑖=1

(a⊤
𝑖 x − 1

𝑚e⊤Ax)
2

=
𝑚
∑
𝑖=1

(a⊤
𝑖 x)2 − 2

𝑚
𝑚
∑
𝑖=1

(e⊤Ax)(a⊤
𝑖 x) + 1

𝑚(e⊤Ax)2

= x⊤A⊤ (I𝑚 − 1
𝑚ee⊤)Ax

Therefore, a reformulation of the problem is

min
x

{x⊤ [A⊤ (I𝑚 − 1
𝑚ee⊤)A]x

‖x‖2 ∶ x ≠ 0}

10.9.1 Proposition

An optimal solution of the orthogonal regression problem is (x, 𝑦), where x is an eigenvector
of A⊤ (I𝑚 − 1

𝑚ee⊤)A associated with the minimum eigenvalue and

𝑦 = 1
𝑚

𝑚
∑
𝑖=1

a⊤
𝑖 x.

The optimal function value of the problem is

𝜆min [A⊤ (I𝑚 − 1
𝑚ee⊤)A] .
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11 KKT Conditions

11.1 Definition (Feasible Descent Direction)

Consider the problem
min 𝑓(𝑥)
s.t. 𝑥 ∈ 𝐶

where 𝑓 is continuously differentiable over the set 𝐶 ⊆ ℝ𝑛. Then a vector d ≠ 0 is called a
feasible descent direction at 𝑥 ∈ 𝐶 if ∇𝑓(𝑥)⊤d < 0 and there exists 𝜖 > 0 such that 𝑥+ 𝑡d ∈ 𝐶
for all 𝑡 ∈ [0, 𝜖].

11.2 Lemma

Consider the problem
(P) min 𝑓(𝑥)

s.t. 𝑥 ∈ 𝐶

where 𝑓 is continuously differentiable over the set 𝐶. If x∗ is a local optimal solution of (P),
then there are no feasible descent directions at x∗.

11.3 Lemma

Let x∗ be a local minimum of the problem

min 𝑓(𝑥)
s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, 2,… ,𝑚

where 𝑓, 𝑔1,… , 𝑔𝑚 are continuously differentiable over ℝ𝑛. Let 𝐼(x∗) be the set of active
constraints at x∗:

𝐼(x∗) = {𝑖 ∶ 𝑔𝑖(x∗) = 0}.

Then there does not exist a vector d ∈ ℝ𝑛 such that

∇𝑓(x∗)⊤d < 0

and
∇𝑔𝑖(x∗)⊤d < 0, 𝑖 ∈ 𝐼(x∗).

11.4 The Fritz-John Necessary Conditions

Let x∗ be a local minimum of the problem

min 𝑓(𝑥)
s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, 2,… ,𝑚
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where 𝑓, 𝑔1,… , 𝑔𝑚 are continuously differentiable functions over ℝ𝑛. Then there exist multi-
pliers 𝜆0, 𝜆1,… , 𝜆𝑚 ≥ 0, which are not all zeros, such that

𝜆0∇𝑓(x∗) +
𝑚
∑
𝑖=1

𝜆𝑖∇𝑔𝑖(x∗) = 0

and
𝜆𝑖𝑔𝑖(x∗) = 0, 𝑖 = 1, 2,… ,𝑚.

11.5 KKT Conditions for Inequality/Equality Constrained Problems

Introduce the equality constraints:
Let x∗ be a local minimum of the problem

min 𝑓(𝑥)
s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, 2,… ,𝑚,

ℎ𝑗(𝑥) = 0, 𝑗 = 1, 2,… , 𝑝

(1)

where 𝑓, 𝑔1,… , 𝑔𝑚, ℎ1,… , ℎ𝑝 are continuously differentiable functions over ℝ𝑛. Suppose that
the gradients of the active constraints and the equality constraints:

{∇𝑔𝑖(x∗),∇ℎ𝑗(x∗)}, 𝑖 ∈ 𝐼(x∗), 𝑗 = 1, 2,… , 𝑝

are linearly independent. Then there exist multipliers 𝜆1,… , 𝜆𝑚 ≥ 0, 𝜇1, 𝜇2,… , 𝜇𝑝 ∈ ℝ,
such that

∇𝑓(x∗) +
𝑚
∑
𝑖=1

𝜆𝑖∇𝑔𝑖(x∗) +
𝑝

∑
𝑗=1

𝜇𝑗∇ℎ𝑗(x∗) = 0

and
𝜆𝑖𝑔𝑖(x∗) = 0, 𝑖 = 1, 2,… ,𝑚.

11.6 Definition (KKT point)

Consider problem (1) where 𝑔1,… , 𝑔𝑚, ℎ1, ℎ2,… , ℎ𝑝 are continuously differentiable functions
over ℝ𝑛. A feasible point x∗ is called a KKT point if there exist 𝜆1,… , 𝜆𝑚 ≥ 0, 𝜇1, 𝜇2,… , 𝜇𝑝 ∈ ℝ
such that

∇𝑓(x∗) +
𝑚
∑
𝑖=1

𝜆𝑖∇𝑔𝑖(x∗) +
𝑝

∑
𝑗=1

𝜇𝑗∇ℎ𝑗(x∗) = 0

and
𝜆𝑖𝑔𝑖(x∗) = 0, 𝑖 = 1, 2,… ,𝑚.

11.7 Definition (Regularity)

A feasible point x∗ is called regular if the set

{∇𝑔𝑖(x∗),∇ℎ𝑗(x∗) ∣ 𝑖 ∈ 𝐼(x∗), 𝑗 = 1, 2,… , 𝑝}
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is linearly independent.

11.8 Example

min 𝑓(𝑥) = 𝑥1 + 𝑥2

s.t. ℎ(𝑥) = [𝑥2
1 + 𝑥2

2 − 1]2 = 0

This problem has a highly nonlinear constraint, which includes a squared form. The constraint
is effectively represented as the definition of a unit circle 𝑥2

1+𝑥2
2 = 1. Such constraints often involve

squaring operations or introduce squared or equivalent forms due to modeling errors, but during
optimization, they may lead to the following issues:

1. Gradient Degeneration: At feasible points, the gradient of the constraint ∇ℎ(𝑥) contains
the factor [𝑥2

1 + 𝑥2
2 − 1], which becomes zero when the constraint is satisfied, resulting in the

complete loss of gradient information for the constraint.

2. KKT Condition Failure: Gradient degeneration may render the stationarity condition (a
part of the KKT conditions) inoperative. The necessary conditions for optimization problems
may degenerate into meaningless identities.

3. Numerical Optimization Challenges: Gradient degeneration causes optimization algo-
rithms to fail to find valid update directions, potentially leading to stagnation or erroneous
results.

11.9 KKT Conditions in the Convex Case

In the convex case the KKT conditions are always sufficient. If a point satisfies the KKT
condition, then it must be a globally optimal solution.

Let x∗ be a feasible solution of the problem

min 𝑓(𝑥)
s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, 2,… ,𝑚,

ℎ𝑗(𝑥) = 0, 𝑗 = 1, 2,… , 𝑝

(2)

where 𝑓, 𝑔1,… , 𝑔𝑚 are continuously differentiable convex functions over ℝ𝑛 and ℎ1, ℎ2,… , ℎ𝑝

are affine functions. Suppose that there exist multipliers 𝜆1,… , 𝜆𝑚 ≥ 0, 𝜇1, 𝜇2,… , 𝜇𝑝 ∈ ℝ, such
that

∇𝑓(x∗) +
𝑚
∑
𝑖=1

𝜆𝑖∇𝑔𝑖(x∗) +
𝑝

∑
𝑗=1

𝜇𝑗∇ℎ𝑗(x∗) = 0

and
𝜆𝑖𝑔𝑖(x∗) = 0, 𝑖 = 1, 2,… ,𝑚.

Then x∗ is the optimal solution of (2).
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11.10 Slaters condition

If constraints are convex, regularity can be replaced by Slaters condition.
For a convex optimization problem:

min 𝑓(𝑥)
s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1,… ,𝑚,

ℎ𝑗(𝑥) = 0, 𝑗 = 1,… , 𝑝,

if all 𝑔𝑖(𝑥) are convex functions and ℎ𝑗(𝑥) are affine functions, then the Slater’s condition
requires:

• There exists a strictly feasible point 𝑥0 ∈ ℝ𝑛 such that:

𝑔𝑖(𝑥0) < 0, ∀𝑖 = 1,… ,𝑚,

and
ℎ𝑗(𝑥0) = 0, ∀𝑗 = 1,… , 𝑝.

This means that there exists a point 𝑥0 that strictly satisfies all inequality constraints and
satisfies the equality constraints.

11.11 Constrained Least Squares

(CLS) min ‖Ax − b‖2 s.t. ‖x‖2 ≤ 𝛼

where A ∈ ℝ𝑚×𝑛 has full column rank, b ∈ ℝ𝑚, 𝛼 > 0.
—
Analysis of Problem (CLS):
Problem (CLS) is a convex problem and satisfies Slater’s condition. The Lagrangian is:

𝐿(x, 𝜆) = ‖Ax − b‖2 + 𝜆(‖x‖2 − 𝛼), (𝜆 ≥ 0)

The KKT conditions are:

∇x𝐿 = 2A⊤(Ax − b) + 2𝜆x = 0

𝜆(‖x‖2 − 𝛼) = 0

‖x‖2 ≤ 𝛼, 𝜆 ≥ 0

—
If 𝜆 = 0, then by the first equation:

x = xLS ≡ (A⊤A)−1A⊤b
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Optimal if and only if ‖xLS‖2 ≤ 𝛼.
—
On the other hand, if ‖xLS‖2 > 𝛼, then necessarily 𝜆 > 0. By the complementary slackness

condition, we have ‖x‖2 = 𝛼 and the first equation implies that:

x = x𝜆 ≡ (A⊤A + 𝜆I)−1A⊤b

The multiplier 𝜆 > 0 should be chosen to satisfy ‖x𝜆‖2 = 𝛼, that is, 𝜆 is the solution of:

𝑓(𝜆) = ‖(A⊤A + 𝜆I)−1A⊤b‖2 − 𝛼 = 0

—
At 𝜆 = 0:

𝑓(0) = ‖(A⊤A)−1A⊤b‖2 − 𝛼 = ‖xLS‖2 − 𝛼 > 0

and 𝑓(𝜆) → −𝛼 as 𝜆 → ∞. The function 𝑓 is strictly decreasing.
Conclusion: The optimal solution of the CLS problem is given by:

x =
⎧{
⎨{⎩

xLS, ‖xLS‖2 ≤ 𝛼

x𝜆, ‖xLS‖2 > 𝛼

where 𝜆 is the unique root of 𝑓(𝜆) over (0,∞).

11.12 Second Order Necessary Optimality Conditions for Inequality/Equality
Constrained Problems

Consider the problem
min 𝑓(𝑥)
s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, 2,… ,𝑚,

ℎ𝑗(𝑥) = 0, 𝑗 = 1, 2,… , 𝑝

where 𝑓, 𝑔1,… , 𝑔𝑚, ℎ1,… , ℎ𝑝 are twice continuously differentiable functions. Let x∗ be a local
minimum and suppose that x∗ is regular, meaning that the set

{∇𝑔𝑖(x∗),∇ℎ𝑗(x∗) | 𝑖 ∈ 𝐼(x∗), 𝑗 = 1, 2,… , 𝑝}

is linearly independent. Then ∃𝜆1, 𝜆2,… , 𝜆𝑚 ≥ 0 and 𝜇1, 𝜇2,… , 𝜇𝑝 ∈ ℝ such that

∇𝑥𝐿(x∗, 𝜆, 𝜇) = 0,

𝜆𝑖𝑔𝑖(x∗) = 0, 𝑖 = 1, 2,… ,𝑚,

and
d⊤∇2

𝑥𝑥𝐿(x∗, 𝜆, 𝜇)d ≥ 0 for all d ∈ Λ(x∗),
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where

Λ(x∗) ≡ {d ∈ ℝ𝑛 |∇𝑔𝑖(x∗)⊤d = 0, 𝑖 ∈ 𝐼(x∗), ∇ℎ𝑗(x∗)⊤d = 0, 𝑗 = 1, 2,… , 𝑝}.

11.13 Trust Region Methods

Objective Problem

Consider a general unconstrained optimization problem:

min
𝑥∈ℝ𝑛

𝑓(𝑥),

where 𝑓(𝑥) is the objective function to be minimized.

Core Ideas of the Trust Region Method

1. Local Quadratic Model:

At each iteration, construct a quadratic approximation 𝑚𝑘(𝑝) of the objective function near
the current point 𝑥𝑘:

𝑚𝑘(𝑝) = 𝑓(𝑥𝑘) + ∇𝑓(𝑥𝑘)⊤𝑝 + 1
2𝑝

⊤𝐻𝑘𝑝,

where:

• 𝑝 = 𝑥 − 𝑥𝑘 is the search direction.

• ∇𝑓(𝑥𝑘) is the gradient at the current point.

• 𝐻𝑘 is the Hessian matrix (or its approximation) at the current point.

2. Trust Region Constraint:

Restrict the step length 𝑝 such that the new step stays within a trusted region (called the
trust region):

‖𝑝‖ ≤ Δ𝑘,

where Δ𝑘 > 0 is the radius of the trust region.

3. Step Adjustment:

Evaluate the quality of the approximation 𝑚𝑘(𝑝) to the actual objective function, and adap-
tively adjust the radius Δ𝑘 of the trust region to control the step length.

11.14 Trust Region Subproblem

During each iteration, a trust region subproblem needs to be solved:

min
𝑝

𝑚𝑘(𝑝) = 𝑓(𝑥𝑘) + ∇𝑓(𝑥𝑘)⊤𝑝 + 1
2𝑝

⊤𝐻𝑘𝑝,

s.t. ‖𝑝‖ ≤ Δ𝑘.
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Characteristics of the Trust Region Subproblem

1. Quadratic Optimization Problem:

The objective function is quadratic.

2. Step Length Constraint:

The constraint is a simple quadratic constraint ‖𝑝‖ ≤ Δ𝑘.

3. Analytical and Numerical Solutions:

• When 𝐻𝑘 is positive definite, an analytical solution may exist.

• When 𝐻𝑘 is not positive definite, numerical methods are required to solve the problem.

Trust Region Method Workflow

The workflow of the trust region method can be divided into the following steps:

Step 1: Initialization

• Specify an initial point 𝑥0 and set the initial trust region radius Δ0 > 0.

• Set the convergence tolerance 𝜖 > 0 and step length adjustment parameters.

Step 2: Solve the Trust Region Subproblem

At the current point 𝑥𝑘, solve the trust region subproblem to obtain the step 𝑝𝑘:

min
𝑝

𝑚𝑘(𝑝) = ∇𝑓(𝑥𝑘)⊤𝑝 + 1
2𝑝

⊤𝐻𝑘𝑝,

s.t. ‖𝑝‖ ≤ Δ𝑘.

Step 3: Update

Compute the new point 𝑥𝑘+1 = 𝑥𝑘 + 𝑝𝑘 and evaluate the actual reduction in the objective
function.

Step 4: Evaluate Model Accuracy

Compare the model-predicted reduction in the objective function with the actual reduction,
and define the ratio:

𝜌𝑘 = 𝑓(𝑥𝑘) − 𝑓(𝑥𝑘 + 𝑝𝑘)
𝑚𝑘(0) − 𝑚𝑘(𝑝𝑘)

.

• 𝜌𝑘 ≈ 1: The model 𝑚𝑘(𝑝) accurately predicts the behavior of 𝑓(𝑥), and the trust region radius
Δ𝑘 may remain unchanged.

• 𝜌𝑘 ≪ 1: The model prediction is inaccurate, and the trust region may need to be reduced.

• 𝜌𝑘 ≫ 1: The model prediction is conservative, and the trust region may need to be enlarged.
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Step 5: Adjust Trust Region Radius

Adjust the trust region radius based on the value of 𝜌𝑘:

• If 𝜌𝑘 ≥ 𝜂1 (successful step), increase the trust region radius: Δ𝑘+1 = 𝛾1Δ𝑘, where 𝛾1 > 1.

• If 𝜌𝑘 ≤ 𝜂2 (unsuccessful step), decrease the trust region radius: Δ𝑘+1 = 𝛾2Δ𝑘, where 0 < 𝛾2 <
1.

• Otherwise, keep Δ𝑘+1 = Δ𝑘.

Step 6: Termination Condition

Terminate the iteration if:

• ‖∇𝑓(𝑥𝑘)‖ < 𝜖, or

• The trust region radius is smaller than a certain threshold, Δ𝑘 < Δmin.

11.15 KKT conditions for the Trust Region Subproblem

The Trust Region Subproblem (TRS) is a problem of minimizing an indefinite quadratic func-
tion under an ℓ2-norm constraint, given by:

(TRS) ∶ min
p∈ℝ𝑛

𝑚(p) = 𝑓(𝑥𝑘) + ∇𝑓(𝑥𝑘)⊤p + 1
2p⊤Hp,

s.t. ‖p‖2 ≤ Δ2,

where:

• p = x − 𝑥𝑘 represents the search direction relative to the current point 𝑥𝑘;

• 𝑚(p) is a quadratic approximation of the objective function 𝑓(𝑥);

• ∇𝑓(𝑥𝑘) is the gradient of the objective function at the current point 𝑥𝑘;

• H ∈ ℝ𝑛×𝑛 is the Hessian matrix of the objective function or its approximation;

• Δ > 0 is the trust region radius, restricting the step length.

A vector p∗ is the optimal solution of the Trust Region Subproblem (TRS) if and only if there
exists 𝜆∗ ≥ 0 such that the following conditions are satisfied:

1. Stationarity:
(H + 𝜆∗I)p∗ = −∇𝑓(x𝑘) (10)

where H is the Hessian matrix of the objective function and ∇𝑓(x𝑘) is the gradient.

2. Feasibility:
‖p∗‖2 ≤ Δ2 (11)

This ensures that the search direction p∗ lies within the trust region.
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3. Complementary Slackness:
𝜆∗(‖p∗‖2 −Δ2) = 0 (12)

When ‖p∗‖2 < Δ2, 𝜆∗ = 0; when ‖p∗‖2 = Δ2, 𝜆∗ ≥ 0.

4. Positive Semidefiniteness:
H + 𝜆∗I ⪰ 0 (13)

This ensures that the matrix is positive semidefinite.

11.16 Least Squares (LS): Noise Only on the Right-Hand Side

In the least squares method, it is assumed that only the right-hand side b contains noise.
The goal of the optimization is to find a vector x such that:

Ax = b + w,

where w ∈ ℝ𝑚 is the noise vector.

Optimization Problem

min
w,x

‖w‖2,

i.e., minimizing the norm of the noise vector w.

11.17 Total Least Squares (TLS): Considering Noise in Both A and b

In the total least squares method, it is assumed that both the coefficient matrix A and
the right-hand side b contain noise, and their errors are to be optimized.

Model Modification

The model becomes:
(A + E)x = b + w,

where:

• E ∈ ℝ𝑚×𝑛 is the error matrix for A;

• w ∈ ℝ𝑚 is the error vector for b.

Optimization Problem

min
E,w,x

‖E‖2𝐹 + ‖w‖2,

s.t. (A + E)x = b + w.
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11.18 The New Formulation of (TLS)

To reduce the complexity of the problem, we take a decomposition approach:
Fix x, solve the subproblem (𝑃𝑥), and obtain the analytic expressions of E and w.

(𝑃𝑥) min
E,w

‖E‖2𝐹 + ‖w‖2,

s.t. (A + E)x = b + w.

The Lagrangian function is constructed as:

𝐿(E,w, 𝜆) = ‖E‖2𝐹 + ‖w‖2 + 2𝜆⊤[(A + E)x − b − w].

To satisfy the KKT conditions, we need:

1. Stationarity:
∇E𝐿 = 0, ∇w𝐿 = 0.

For E:
∇E𝐿 = 2E + 2𝜆x⊤ = 0 ⟹ E = −𝜆x⊤. (19)

For w:
∇w𝐿 = 2w − 2𝜆 = 0 ⟹ w = 𝜆. (20)

2. Feasibility:
(A + E)x = b + w.

Combining E = −𝜆x⊤ and w = 𝜆, we have:

(A − 𝜆x⊤)x = b + 𝜆.

Simplifying gives:
𝜆(‖x‖2 + 1) = Ax − b.

Thus:
𝜆 = Ax − b

‖x‖2 + 1. (21)

From this, we deduce:

E = −𝜆x⊤, w = 𝜆, 𝜆 = Ax − b
‖x‖2 + 1.

Substituting these expressions into the original objective function:

‖E‖2𝐹 + ‖w‖2 = ‖𝜆x⊤‖2𝐹 + ‖𝜆‖2.

Note that:
‖𝜆x⊤‖2𝐹 = ‖𝜆‖2‖x‖2,
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thus:
‖E‖2𝐹 + ‖w‖2 = ‖𝜆‖2(‖x‖2 + 1).

Substituting 𝜆 = Ax−b
‖x‖2+1 , the objective function simplifies to:

‖E‖2𝐹 + ‖w‖2 = ‖Ax − b‖2
‖x‖2 + 1 .

By substituting the solution of the subproblem, the original problem is transformed into the
following unconstrained optimization problem about x:

(TLS′) min
x∈ℝ𝑛

‖Ax − b‖2
‖x‖2 + 1 .

However, it’s still a nonconvex problem. What’s more, it resembles the problem of minimizing
the Rayleigh quotient.

11.19 Theorem

x is an optimal solution of (TLS′) if and only if (x,E,w) is an optimal solution of (TLS) where
E = − (Ax−b)x⊤

‖x‖2+1 and w = Ax−b
‖x‖2+1 .

11.20 Homogenization Argument and Relaxation of TLS

Introducing 𝑡 = 1

To handle the fractional objective function ‖Ax−b‖2
‖x‖2+1 , we can introduce an auxiliary variable 𝑡

to homogenize the fraction. The new objective function becomes:

min
x∈ℝ𝑛,𝑡∈ℝ

{‖Ax − 𝑡b‖2
‖x‖2 + 𝑡2 ∶ 𝑡 = 1} .

This means replacing the constant 1 in the denominator with 𝑡2, making the problem homo-
geneous with respect to the variables (x, 𝑡).

Reformulating into a Homogeneous Form

By defining a new variable y = ⎛⎜
⎝

x
𝑡
⎞⎟
⎠

∈ ℝ𝑛+1, the problem becomes:

𝑓∗ = min
y∈ℝ𝑛+1

{y⊤By
‖y‖2 ∶ 𝑦𝑛+1 = 1} , (22)

where:

B = ⎛⎜
⎝

A⊤A −A⊤b
−b⊤A ‖b‖2

⎞⎟
⎠

.

Here:

• B is a symmetric matrix, which integrates information from A and b.
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• The key to homogenization is transforming the fractional objective into the quadratic form
y⊤By divided by ‖y‖2.

Relaxing the Constraint 𝑦𝑛+1 = 1

A key constraint in the above problem is 𝑦𝑛+1 = 1, which fixes the last dimension of the
homogeneous variable y. However, this constraint may be unnecessary and increases the complexity
of the solution.

Thus, we consider a relaxed version of the problem:

𝑔∗ = min
y∈ℝ𝑛+1

{y⊤By
‖y‖2 ∶ y ≠ 0} . (23)

In the relaxed version, we drop the restriction 𝑦𝑛+1 = 1, requiring only that y ≠ 0.

Advantages of the Relaxed Version

1. Improved Generality:

• The relaxed version does not rely on specific coordinate constraints and is applicable to
a broader range of problems.

2. Simplified Solution:

• After relaxation, the problem reduces to finding the eigenvector of matrix B correspond-
ing to its smallest eigenvalue.

11.21 Lemma

If the optimal solution y∗ of the relaxed problem (23) satisfies 𝑦∗𝑛+1 ≠ 0, then through the
normalization operation:

ỹ = y∗

𝑦∗𝑛+1
,

we can obtain a new vector ỹ, which satisfies:

1. ỹ⊤Bỹ/‖ỹ‖2 = 𝑔∗, meaning the objective value remains unchanged;

2. ̃𝑦𝑛+1 = 1, meaning it satisfies the constraint of the original problem.

Thus, ỹ is the optimal solution of the original problem (22).
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12 Duality

12.1 Definition

𝑓∗ = min 𝑓(𝑥)
s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, 2,… ,𝑚,

ℎ𝑗(𝑥) = 0, 𝑗 = 1, 2,… , 𝑝,
𝑥 ∈ 𝑋

(1)

𝑓 , 𝑔𝑖, ℎ𝑗 (𝑖 = 1, 2,… ,𝑚, 𝑗 = 1, 2,… , 𝑝) are functions defined on the set 𝑋 ⊆ ℝ𝑛.
Problem (1) will be referred to as the primal problem.
The dual objective function 𝑞 ∶ ℝ𝑚

+ × ℝ𝑝 → ℝ ∪ {−∞} is defined to be

𝑞(𝜆, 𝜇) = min
𝑥∈𝑋

𝐿(𝑥, 𝜆, 𝜇). (2)

The domain of the dual objective function is

dom(𝑞) = {(𝜆, 𝜇) ∈ ℝ𝑚
+ × ℝ𝑝 ∶ 𝑞(𝜆, 𝜇) > −∞}.

The dual problem is given by

𝑞∗ = max 𝑞(𝜆, 𝜇) s.t. (𝜆, 𝜇) ∈ dom(𝑞). (3)

12.2 Theorem

Consider problem (1) with 𝑓 , 𝑔𝑖, ℎ𝑗 (𝑖 = 1, 2,… ,𝑚, 𝑗 = 1, 2,… , 𝑝) being functions defined on
the set 𝑋 ⊆ ℝ𝑛, and let 𝑞 be the dual function defined in (2). Then

(a) dom(𝑞) is a convex set.

(b) 𝑞 is a concave function over dom(𝑞).

12.3 The Weak Duality Theorem

Consider the primal problem (1) and its dual problem (3). Then

𝑞∗ ≤ 𝑓∗,

where 𝑓∗,𝑞∗ are the primal and dual optimal values respectively.

12.4 Theorem (Supporting Hyperplane Theorem)

Let 𝐶 ⊆ ℝ be a convex set and let y ∉ 𝐶. Then there exists 0 ≠ p ∈ ℝ𝑛 such that

p𝑇x ≤ p𝑇y for any x ∈ 𝐶.
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12.5 Separation of Two Convex Sets

Let 𝐶1, 𝐶2 ⊆ ℝ𝑛 be two nonempty convex sets such that 𝐶1 ∩ 𝐶2 = ∅. Then there exists
0 ≠ p ∈ ℝ𝑛 for which

p⊤x ≤ p⊤y for any x ∈ 𝐶1, y ∈ 𝐶2.

12.6 The Nonlinear Farkas’ Lemma

Let 𝑋 ⊆ ℝ𝑛 be a convex set and let 𝑓, 𝑔1, 𝑔2,… , 𝑔𝑚 be convex functions over 𝑋. Assume that
there exists ̂𝑥 ∈ 𝑋 such that

𝑔1( ̂𝑥) < 0, 𝑔2( ̂𝑥) < 0, … , 𝑔𝑚( ̂𝑥) < 0.

Let 𝑐 ∈ ℝ. Then the following two claims are equivalent:

(a) the following implication holds:

x ∈ 𝑋, 𝑔𝑖(x) ≤ 0, 𝑖 = 1, 2,… ,𝑚 ⟹ 𝑓(x) ≥ 𝑐.

(b) there exist 𝜆1, 𝜆2,… , 𝜆𝑚 ≥ 0 such that

min
x∈𝑋

{𝑓(x) +
𝑚
∑
𝑖=1

𝜆𝑖𝑔𝑖(x)} ≥ 𝑐. (5)

12.7 Strong Duality of Convex Problems with Inequality Constraints

Consider the optimization problem

𝑓∗ = min 𝑓(x)
s.t. 𝑔𝑖(x) ≤ 0, 𝑖 = 1, 2,… ,𝑚,
x ∈ 𝑋

(7)

where 𝑋 is a convex set and 𝑓, 𝑔𝑖, 𝑖 = 1, 2,… ,𝑚 are convex functions over 𝑋. Suppose that
there exists x̂ ∈ 𝑋 for which 𝑔𝑖(x̂) < 0, 𝑖 = 1, 2,… ,𝑚. If problem (7) has a finite optimal value,
then

(a) the optimal value of the dual problem is attained.

(b) 𝑓∗ = 𝑞∗.

12.8 Complementary Slackness Conditions

Consider the optimization problem

𝑓∗ = min{𝑓(x) ∶ 𝑔𝑖(x) ≤ 0, 𝑖 = 1, 2,… ,𝑚, x ∈ 𝑋}, (8)

and assume that 𝑓∗ = 𝑞∗ where 𝑞∗ is the optimal value of the dual problem. Let x∗, 𝜆∗ be feasible
solutions of the primal and dual problems, respectively. Then x∗, 𝜆∗ are optimal solutions of the
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primal and dual problems if and only if

x∗ ∈ arg min
x∈𝑋

𝐿(x, 𝜆∗), (9)

𝜆∗
𝑖𝑔𝑖(x∗) = 0, 𝑖 = 1, 2,… ,𝑚. (10)

12.9 A More General Strong Duality Theorem

Consider the optimization

𝑓∗ =min
x∈X

𝑓(x)

s.t. 𝑔𝑖(x) ≤ 0, 𝑖 = 1, 2,… ,𝑚,
ℎ𝑗(x) ≤ 0, 𝑗 = 1, 2,… , 𝑝,
𝑠𝑘(x) = 0, 𝑘 = 1, 2,… , 𝑞.
x ∈ X

(11)

where 𝑋 is a convex set and 𝑓, 𝑔𝑖, 𝑖 = 1, 2,… ,𝑚 are convex functions over 𝑋. The functions
ℎ𝑗, 𝑠𝑘 are affine functions. Suppose that there exists x̂ ∈ int(𝑋) for which 𝑔𝑖(x̂) < 0, ℎ𝑗(x̂) ≤
0, 𝑠𝑘(x̂) = 0. Then if problem (11) has a finite optimal value, the optimal value of the dual problem

𝑞∗ = max{𝑞(𝜆, 𝜂, 𝜇) ∶ (𝜆, 𝜂, 𝜇) ∈ dom(𝑞)},

where

𝑞(𝜆, 𝜂, 𝜇) = min
x∈𝑋

[𝑓(x) +
𝑚
∑
𝑖=1

𝜆𝑖𝑔𝑖(x) +
𝑝

∑
𝑗=1

𝜂𝑗ℎ𝑗(x) +
𝑞

∑
𝑘=1

𝜇𝑘𝑠𝑘(x)]

is attained, and 𝑓∗ = 𝑞∗.
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13 Subgradient Method

13.1 Theorem (Informal)

Any Convex function is differentiable almost everywhere.

13.2 Introduction to Subgradient

For a differentiable convex function 𝑓 ∶ ℝ𝑛 → (−∞,∞], its linearization at a vector 𝑥 ∈ dom(𝑓)
is given by:

𝑓(x) + ∇𝑓(x)⊤(y − x),

And we have for all y ∈ dom(𝑓),

𝑓(y) ≥ 𝑓(x) + ∇𝑓(x)⊤(y − x).

It shows that the linearization of a convex function is always its lower bound.

13.3 Definition (Subgradient and Subdifferential)

Let 𝑓 ∶ ℝ𝑛 → (−∞,∞] be a proper convex function, i.e. 𝑓 not always equal to ∞ . A vector
g ∈ ℝ𝑛 is a subgradient of 𝑓 at a point x ∈ dom(𝑓) if for all y ∈ dom(𝑓), we have

𝑓(y) ≥ 𝑓(x) + g⊤(y − x).

The subdifferential of 𝑓 at x is the set of all subgradients of 𝑓 at x, denoted by 𝜕𝑓(x).

13.3.1 Subgradient of a Differentiable Point

For differentiable convex function, at every point x ∈ dom(𝑓), the set of subgradients 𝜕𝑓(x)
contains only the gradient ∇𝑓(x).

13.3.2 Subgradient of a Nondifferentiable point

For a convex function that is not differentiable at a point, the subdifferential is a set of sub-
gradients, rather than a single subgradient.

13.4 Epigraph

Epigraph of a function 𝑓 ∶ ℝ𝑛 → ℝ is the set of points lying above the graph of 𝑓 :

epi(𝑓) = {(x, 𝑡) ∈ ℝ𝑛 × ℝ ∶ 𝑓(x) ≤ 𝑡}.

The subdifferential inequality can be combined with geometry, where the concept of subdiffer-
ential 𝑠 can be described using a supporting hyperplane as follows:

For the subdifferential 𝑠 at the point (𝑥, 𝑓(𝑥)), a supporting hyperplane 𝐻 is defined as:

𝐻 = {(𝑦, 𝛾) ∈ ℝ𝑛+1 ∶ (−𝑠⊤, 1)⊤(𝑦; 𝛾) = (−𝑠⊤, 1)⊤(𝑥; 𝑓(𝑥))}.
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The hyperplane passes through the point (𝑥, 𝑓(𝑥)) and supports the epigraph of 𝑓 .
In other words, this hyperplane is ”tightly attached” to the boundary of the epigraph and

satisfies the property that all points below the hyperplane are contained in epi(𝑓). This is consistent
with the subdifferential condition.

13.5 Theorem (Closedness and Convexity of the Subdierential Set)

Let 𝑓 ∶ ℝ𝑛 → (−∞,∞] be a proper function. Then the set 𝜕𝑓(x) is closed and convex for
any x ∈ dom(𝑓).

13.6 Definiiton (Subdifferentiability)

A proper function 𝑓 ∶ ℝ𝑛 → (−∞,∞] is subdifferentiable at a point x ∈ dom(𝑓) if its
subdifferential 𝜕𝑓(x) is nonempty.

13.7 Lemma (Nonemptiness of Subdifferential Sets → Convexity)

Let 𝑓 ∶ ℝ𝑛 → (−∞,∞] be a proper function and assume dom(𝑓) is convex. Suppose for any
x ∈ dom(𝑓), the subdifferential 𝜕𝑓(x) is nonempty. Then 𝑓 is convex.

13.8 Theorem (Nonemptiness and boundedness of the subdifferential set at
interior points of the domain)

Let 𝑓 be a proper convex function, and assume x ∈ int(dom(𝑓)). Then, 𝜕𝑓(x) is nonempty
and bounded.

13.8.1 Corollary

Let 𝑓 ∶ ℝ𝑛 → ℝ be a convex function. Then 𝑓 is subdifferentiable over ℝ𝑛.

13.9 Max Formula

Let 𝑓 ∶ ℝ𝑛 → ℝ be a proper convex function. Then for any x ∈ int(dom(𝑓)) and d ∈ ℝ𝑛,

𝑓 ′(x;d) = max{s⊤d ∶ s ∈ 𝜕𝑓(x)}.

13.10 Theorem (The Subdierential at points of dierentiability)

Let 𝑓 ∶ ℝ𝑛 → (−∞,∞] be a proper convex function, and let x ∈ int(dom(𝑓)). If 𝑓 is differen-
tiable at x, then 𝜕𝑓(x) = {∇𝑓(x)}.

Conversely, if 𝑓 has a unique subgradient at x, then 𝑓 is differentiable at x, and 𝜕𝑓(x) =
{∇𝑓(x)}.

13.11 Theorem (Multiplication by a positive scalar)

In convex analysis, the subgradient is a generalized concept of the ”slope” of a convex function
at a given point, especially useful for non-differentiable points. The computation of subgradients
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is particularly important in optimization problems, as it provides directional information for opti-
mization algorithms.

The methods for computing subgradients are usually divided into two categories:
1. Weak Results: These are rules for computing some subgradients, i.e., in certain cases,

specific subgradient vectors can be directly identified. However, they do not fully describe the entire
subdifferential set.

2. Strong Results: These provide a full characterization or complete description of the
subdifferential set, allowing us to completely understand and describe all possible subgradient
vectors.

Let 𝑓 ∶ ℝ𝑛 → (−∞,∞] be a proper convex function, and let x ∈ dom(𝑓). Then for any x and
any 𝛼 > 0, we have

𝜕(𝛼𝑓)(x) = 𝛼𝜕𝑓(x).

13.12 Theorem (Summation)

Let 𝑓1, 𝑓2 ∶ ℝ𝑛 → (−∞,∞] be proper convex functions.
(a) If x ∈ dom(𝑓1) ∩ dom(𝑓2), the following inclusion holds:

𝜕𝑓1(x) + 𝜕𝑓2(x) ⊆ 𝜕(𝑓1 + 𝑓2)(x).

(b) If x ∈ int(dom(𝑓1)) ∩ int(dom(𝑓2)), then

𝜕(𝑓1 + 𝑓2)(x) = 𝜕𝑓1(x) + 𝜕𝑓2(x).

13.13 Theorem(Affine transformation)

Let 𝑓 ∶ ℝ𝑚 → (−∞,∞] be a proper convex function and 𝐴 ∈ ℝ𝑚×𝑛. Let

ℎ(x) = 𝑓(𝐴x + b) with b ∈ ℝ𝑚.

Assume that ℎ is proper, meaning that

dom(ℎ) = {x ∈ ℝ𝑛 ∶ 𝐴x + b ∈ dom(𝑓)} ≠ ∅.

(a) (weak affine transformation rule of subdifferential calculus) For any x ∈ dom(ℎ),

𝐴⊤(𝜕𝑓(𝐴x + b)) ⊆ 𝜕ℎ(x).

• Left-hand explanation: 𝐴⊤(𝜕𝑓(𝐴x+b)) represents the new set obtained by applying the linear
transformation 𝐴⊤ to all subgradient vectors of 𝑓 at the point 𝐴x + b.

• Right-hand explanation: 𝜕ℎ(x) represents the subdifferential set of the function ℎ at the point
x.

Meaning: This part shows that the subdifferential set of the transformed function ℎ includes at
least all vectors in the subdifferential set of 𝑓 at the corresponding point, after applying the linear
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transformation 𝐴⊤.
(b) (affine transformation rule of subdifferential calculus) If x ∈ int(dom(ℎ)), then

𝜕ℎ(x) = 𝐴⊤(𝜕𝑓(𝐴x + b)).

In this case, the subdifferential set of ℎ not only includes all vectors in 𝐴⊤𝜕𝑓(𝐴x+b), but the
two sets are actually equivalent.

13.14 Theorem (Max Rule of Subdifferential Calculus)

Let 𝑓1, 𝑓2,… , 𝑓𝑚 ∶ ℝ𝑛 → (−∞,∞] be proper convex functions, and define

𝑓(x) = max{𝑓1(x), 𝑓2(x),… , 𝑓𝑚(x)}.

Let x ∈ ⋂𝑚
𝑖=1 int(dom(𝑓𝑖)). Then

𝜕𝑓(x) = conv⎛⎜
⎝

⋃
𝑖∈𝐼(x)

𝜕𝑓𝑖(x)⎞⎟
⎠

,

where 𝐼(x) = {𝑖 ∈ {1, 2,… ,𝑚} ∶ 𝑓𝑖(x) = 𝑓(x)}.

13.15 Theorem (Fermat’s optimality condition)

Let 𝑓 ∶ ℝ𝑛 → (−∞,∞] be a proper convex function. Then

x∗ ∈ argmin{𝑓(x) ∶ x ∈ ℝ𝑛}

if and only if 0 ∈ 𝜕𝑓(x∗).

13.16 Theorem (Optimality Conditions for Convex Constrained Optimiza-
tion)

Let 𝑓 ∶ ℝ𝑛 → ℝ be a proper convex function, and let 𝐶 be a convex set for which int(dom(𝑓))∩
int(𝐶) ≠ ∅. Then

x∗ ∈ argmin{𝑓(x) ∶ x ∈ 𝐶}

if and only if there exists s ∈ 𝜕𝑓(x∗) for which

s⊤(x − x∗) ≥ 0 for any x ∈ 𝐶.

13.17 Theorem (Informal)

The direction of minus the subgradient is not necessarily a descent direction.
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13.17.1 Example

consider 𝑓 ∶ ℝ × ℝ → ℝ given by 𝑓(𝑥1, 𝑥2) = |𝑥1| + 2|𝑥2|. Then

𝜕𝑓(1, 0) = {(1, 𝑥) ∶ |𝑥| ≤ 2}.

In particular, (1, 2) ∈ 𝜕𝑓(1, 0). However, the direction −(1, 2) is not a descent direction.

13.18 Projected Subgradient Method

Algorithm 3 Projected Subgradient Method
0: Initialization: pick x0 ∈ 𝐶 arbitrarily.
0: General step:
0: for 𝑘 = 0, 1, 2,… do
0: pick a stepsize 𝑡𝑘 > 0 and a subgradient 𝑓 ′(x𝑘) ∈ 𝜕𝑓(x𝑘)
0: set x𝑘+1 = 𝑃𝐶(x𝑘 − 𝑡𝑘𝑓 ′(x𝑘))
0: end for=0

13.19 Convergence of the Projected Subgradient Method

Assumptions:

• 𝑓 ∶ ℝ𝑛 → ℝ is a proper closed and convex function.

• Let 𝐶 ⊆ int(dom(𝑓)) be nonempty, closed, and convex.

• The optimal set 𝑋∗ is nonempty, and the optimal value is 𝑓∗.

• There exists a constant 𝐿𝑓 > 0 for which ‖s‖ ≤ 𝐿𝑓 for all s ∈ 𝜕𝑓(x), x ∈ 𝐶.

Under the above assumptions, let {x𝑘}𝑘≥0 be the sequence generated by the projected subgra-
dient method for solving

min
x∈𝐶

𝑓(x)

with positive stepsizes {𝑡𝑘}𝑘≥0. If

∑𝑘
𝑛=0 𝑡2𝑛

∑𝑘
𝑛=0 𝑡𝑛

→ 0 as 𝑘 → ∞,

then
̂𝑓𝑘 − 𝑓∗ → 0 as 𝑘 → ∞,

where ̂𝑓𝑘 ≡ min𝑛=0,1,…,𝑘 𝑓(x𝑛).
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